Boukrouh, Ikhlass
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Explainable machine learning models applied to predicting customer churn for e-commerce Boukrouh, Ikhlass; Azmani, Abdellah
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i1.pp286-297

Abstract

Precise identification of customer churn is crucial for e-commerce companies due to the high costs associated with acquiring new customers. In this sector, where revenues are affected by customer churn, the challenge is intensified by the diversity of product choices offered on various marketplaces. Customers can easily switch from one platform to another, emphasizing the need for accurate churn classification to anticipate revenue fluctuations in e-commerce. In this context, this study proposes seven machine learning classification models to predict customer churn, including decision tree (DT), random forest (RF), support vector machine (SVM), logistic regression (LR), naïve Bayes (NB), k-nearest neighbors (K-NN), and artificial neural network (ANN). The performances of the models were evaluated using confusion matrix, accuracy, precision, recall, and F1-score. The results indicated that the ANN model achieves the highest accuracy at 92.09%, closely followed by RF at 91.21%. In contrast, the NB model performed the least favorably with an accuracy of 75.04%. Two explainable artificial intelligence (XAI) methods, shapley additive explanations (SHAP) and local interpretable model-agnostic explanations (LIME), were used to explain the models. SHAP provided global explanations for both ANN and RF models through Kernel SHAP and Tree SHAP. LIME, offering local explanations, was applied only to the ANN model which gave better accuracy.
Machine learning-assisted decision support in industrial manufacturing: a case study on injection molding machine selection Tayalati, Faouzi; Idiri, Soulaimane; Boukrouh, Ikhlass; Azmani, Abdellah; Azman, Monir
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i1.pp270-285

Abstract

Selecting the right injection molding machine for new products remains a challenging task that significantly influences the profitability and flexibility of companies. The conventional approach involves performing theoretical calculations for clamping force, conducting mechanical validations of the mold, and carrying out real trials for new parts. This approach is time-consuming, costly, and requires a high level of expertise to ensure the optimal machine choice. This study explores the use of machine learning (ML) methods for efficient machine selection based on product, material, and mold criteria. Six supervised learning techniques were tested on a dataset comprising 70 plastic parts and five machines. Evaluation metrics like F1-score, recall, precision, and accuracy were used to compare models. The results indicate that ML can provide guidance for predicting machine selection, with a preference for the random forest (RF), decision tree (DT), and support vector machine (SVM) models. The most favorable outcome is demonstrated by the RF model, displaying an accuracy of 93%. In this manner, these findings may be helpful for injection molding businesses that are considering the significance of using classification algorithms in their manufacturing process.