Pokale Kavya, Narasimha Murthy
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Design of an effective multiple objects tracking framework for dynamic video scenes Kumar Karanam, Sunil; Pokale Kavya, Narasimha Murthy
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp3879-3891

Abstract

Nowadays, the applications corresponding to video surveillance systems are getting popular due to their wide range of deployment in various places such as schools, roads, and airports. Despite the continuous evolution and increasing deployment of object-tracking features in video surveillance applications, the loopholes still need to be solved due to the limited functionalities of video-tracking systems. The existing video surveillance systems pose high processing overhead due to the larger size of video files. However, the traditional literature report quite sophisticated schemes which might successfully retain higher object detection accuracy from the video scenes but needs more effectiveness regarding computational complexity under limited computing resources. The study thereby identifies the scope of enhancement in traditional object-tracking functions. Further, it introduces a novel, cost-effective tracking model based on Gaussian mixture model (GMM) and Kalman filter (KF) that can accurately identify numerous mobile objects from a dynamic video scene and ensures computing efficiency. The study's outcome shows that the proposed strategic modelling offers better tracking performance for dynamic objects with cost-effective computation compared to the popular baseline approaches.