Cordova, Ronald S.
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Accurate prediction of chronic diseases using deep learning algorithms Cordova, Ronald S.; Maata, Rolou Lyn R.; Jawarneh, Malik; Alshar'e, Marwan I.; Agustin, Oliver C.
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 1: February 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i1.pp570-583

Abstract

In this paper, the researchers studied the effects of different activation functions in hidden layers and how they impact the overfitting or underfitting of the model in the multiclass prediction of chronic diseases. This paper also evaluated the effects of varying the number of layers, and hyperparameters and its impact on the accuracy of the model and its generalization capabilities. It was found that exponential linear unit (ELU) does not have a significant advantage over rectified linear unit (ReLU) when used as an activation function in the hidden layer. Additionally, the performance of softmax function, when used in the output layer, is the same as a classic sigmoid output activation function. In terms of the ability of the model to generalize, the researchers achieved a classification accuracy of 100% when the trained model was used to predict unseen data. Through this research, the researchers should be able to assist medical professionals and practitioners in Oman in the validation and diagnosis of chronic diseases in clinics and hospitals.