Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deep ensemble architectures with heterogeneous approach for an efficient content-based image retrieval Asokaraj, Manimegalai; Kumar, Josephine Prem; Ashwin, Nanda
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp4843-4855

Abstract

In the field of digital image processing, content-based image retrieval (CBIR) has become essential for searching images based on visual content characteristics like color, shape, and texture, rather than relying on text-based annotations. To address the increasing demands for efficiency and precision in CBIR systems, we introduce the HybridEnsembleNet methodology. HybridEnsembleNet combines deep learning algorithms with an asymmetric retrieval framework to optimize feature extraction and comparison in extensive image databases. This novel approach, specifically custom-made for CBIR, employs a lightweight query structure skilled at handling large-scale data under resource-constrained environments. The experiments were performed on the ROxford and RParis datasets. The deep learning component of HybridEnsembleNet significantly refines the accuracy of image matching and retrieval. RParis The ROxford dataset, specifically in the medium and hard difficulty benchmarks, demonstrates an enhancement of 5.53% and 10.44%, respectively. Similarly, the RParis dataset, under medium and hard benchmarks, exhibits improvements of 3.01% and 5.83%, showcasing superior performance compared to existing models. By overcoming the traditional limitations of CBIR systems in mean average precision (mAP) metrics, HybridEnsembleNet provides a scalable, efficient, and more accurate solution for retrieving relevant images from vast digital libraries.
HBRFE: an enhanced recursive feature elimination model for big data classification Varadharajan, Kesavan Mettur; Kumar, Josephine Prem; Ashwin, Nanda
Bulletin of Electrical Engineering and Informatics Vol 14, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i4.9595

Abstract

The process of classification in big data is a tedious task due to the large number of volumes, veracity, and variety of the data. Classification of big data pave the path to organize the data and improve the classifier performance. This research article proposed a Hadoop framework based recursive feature elimination-based model called HBFRE for extract significant features from the big data by integrating map and reduce frame work. HBFRE extract the significant features by removing the least and irrelevant features from the dataset by using refined recursive feature elimination (RFE) with map and reduce framework. This method takes the mean of each attribute and find the variance in each instance. The proposed model is evaluated and analyzed by the accuracy performance and time complexity. This research utilized various classifier like artificial neural network (ANN), support vector machine (SVM), random forest (RF), k-nearest neighbors (KNN), and AdaBoost to measure the classification performance on the big data. Proposed HBRFE model is compared with different feature selection like RFE, relief, backwards feature elimination, maximum relevance k-nearest neighbors (MR-KNN), and scalable deep ensemble framework big data classification (SDELF-BDC).