Bayu Syah, Rahmad
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

ConciseCarNet: convolutional neural network for parking space classification Ramli, Marwan; Rahman, Sayuti; Bayu Syah, Rahmad
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 13, No 4: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v13.i4.pp4158-4168

Abstract

The car is a mode of transportation that brings numerous benefits to the community. As a result, the growth of vehicles is increasing, which has a negative impact. Some of the negative impacts include noise, air pollution, traffic congestion, and the need for parking spaces. Drivers that drive around looking for parking places increase the negative impact as well as boredom and even worry for the driver. Therefore, the driver needs this information on the availability of parking spaces. A convolutional neural network (CNN) using a camera is one of the best methods that can be used to solve this problem. We built a more efficient CNN architecture for classifying parking spaces, which was named ConciseCarNet. ConciseCarNet uses 33 and 11 convolution filters, which cause fewer parameters than previous architectures. ConciseCarNet has two branches, each with a different branch structure. This branch is designed to generate additional feature variations, which will help improve the accuracy. Based on testing, the accuracy of ConciseCarNet2x outperforms the accuracy of mAlexnet, Carnet, EfficientParkingNet, and you look once (YOLO)+MobilNet architectures, which is 99.37%. ConciseCarNet has fewer parameters, file sizes, and floating point operations (FLOPs) compared to other architectures.