Shuvo, Mehedi Hasan
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Cost-effective IoT-based automated vehicle headlight control system: design and implementation Begum, Momotaz; Ullah, Nayeem; Shuvo, Mehedi Hasan; Islam, Towhidul; Hossen, Thofazzol; Uddin, Jia
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 14, No 1: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v14i1.pp325-333

Abstract

The current world would be difficult without vehicles, which offer vital advantages for social connectivity, mobility, and technical advancement. Though motor vehicles provide benefits to passenger transportation, they also present certain challenges in their use. A major issue is nighttime traffic accidents caused by headlamps from automobiles traveling in reverse directions, that's why there is a high probability of accidents due to the glare on the driver's eyes. The phrase "Troxler effect" refers to an unexpected glare that a motorist recognizes. In this paper, we will provide an optimal solution to this challenge/Troxler effect. The primary objective of this paper is to design an internet of things (IoT)-based smart headlight control model. Our system introduced a cost-effective vehicle’s headlights controlled by light detection. According to this paper, a vehicle’s headlights are automatically rotated down when the sensor detects lights from the opposite direction of the vehicle headlights. We tried to reduce the road accident rate with our proposed system. This type of technology will prove useful in the motor vehicle sector and offer an innovative approach that ensures driver safety as well as increasing economic development.
A hybrid machine learning approach for improved ponzi scheme detection using advanced feature engineering Hossain, Fahad; Shuvo, Mehedi Hasan; Uddin, Jia
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 14, No 1: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v14i1.pp50-58

Abstract

Ponzi schemes deceive investors with promises of high returns, relying on funds from new investors to pay earlier ones, creating a misleading appearance of profitability. These schemes are inherently unsustainable, collapsing when new investments wane, leading to significant financial losses. Many researchers have focused on detecting such schemes, but challenges remain due to their evolving nature. This study proposes a novel hybrid machine-learning approach to enhance Ponzi scheme detection. Initially, we train an XGBoost classifier and extract its features. Meanwhile, we tokenize opcode sequences, train a gated recurrent unit (GRU) model on these sequences, and extract features from the GRU. By concatenating the features from the XGBoost classifier and the GRU, we train a final XGBoost model on this combined feature set. Our methodology, leveraging advanced feature engineering and hybrid modeling, achieves a detection accuracy of 96.57%. This approach demonstrates the efficacy of combining XGBoost and GRU models, along with sophisticated feature engineering, in identifying fraudulent activities in Ethereum smart contracts. The results highlight the potential of this hybrid model to offer more robust and accurate Ponzi scheme detection, addressing the limitations of previous methods.