Balamurugan, M.
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Design and control of a grid-connected solar-wind hybrid sustainable energy generation systems using DFIG Kumar, G. B. Arjun; Balamurugan, M.; Kumar, K. N. Sunil; Gatti, Ravi
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i1.pp188-201

Abstract

An optimal control of a grid-connected solar-wind hybrid scheme for the electricity generation system by utilizing both wind and solar renewable energy in a remote region that is inaccessible to the electricity grid. The control and assessment of a hybrid sustainable energy generation system power system that supplies three-phase, four-line loads as well as a battery array are presented in this research work. Wind energy conversion system (WECS) is comprised of a doubly-fed induction generator (DFIG) and two pulse width modulation (PWM) voltage source converters, namely the grid side converter (GSC) and the rotor side converter (RSC), which are linked together via a DC-link and are equipped with a technique for maximum power point tracking (MPPT). The grid voltage-oriented control strategy is employed to provide a consistent DC-bus voltage for the GSC and to regulate the reactive power on the power grid. Even the difference in voltage and frequency can be controlled with this novel strategy. The stator voltage-oriented vector technique is designed in the RSC control strategy, resulting in effective regulation of reactive and active power at the stator as well as an MPPT obtained by controlling the optimal torque. The hybrid sustainable energy generating system (HSEGS) simulation model is designed to have a capacity of 5 kW, and its efficiency is evaluated using the MATLAB/ Simulink platform and demonstrated in a variety of circumstances.
Adaptive hybrid particle swarm optimization and fuzzy logic controller for a solar-wind hybrid power system Kumar, G. B. Arjun; Balamurugan, M.; Kumar, K. N. Sunil; Gatti, Ravi
International Journal of Applied Power Engineering (IJAPE) Vol 14, No 2: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijape.v14.i2.pp498-512

Abstract

This paper presents the best modeling and control strategies for a grid-connected hybrid wind-solar power system to maximize energy production. For variable wind speeds, determine the optimal power point using fuzzy logic control, adopt an adaptive hill climb searching method, and compare it with an optimal torque control method for large inertia wind turbine (WT). The role of fuzzy logic controller (FLC) is to adjust the hill climbing search (HCS) technique's step-size according to the operating point. The doubly-fed induction generator (DFIG) control system has two subsystems: rotor-side and grid-side converters. The active and reactive power have been indirectly regulated by adjusting the current on the d-q axis. The rotor side converter (RSC) controllers are responsible for controlling the WTs rotational speed to achieve the maximum power output. The grid side converter (GSC) manages the voltage at the DC link and keeps a unity power factor between the grid and GSC. Optimal hybrid power point tracking technique for use with photovoltaic systems in both constant and variable shade circumstances, based on particle swarm optimization (PSO) and perturb and observe (P&O). The optimal power point tracking (OPPT) approach is compared to three other methods: PSO, P&O, and hybrid P&O-PSO. The model has a total capacity of 2.249 MW, with wind capacity of 2 MW and solar capacity of 0.249 MW, and its efficiency is analyzed.