Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deep Learning based classification of ECG signals using RNN and LSTM Mechanism V, Satheeswaran; G.Naga Chandrika; Ankita Mitra; Rini Chowdhury; Prashant Kumar; Glory E
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 6 No 4 (2024): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v6i4.496

Abstract

The Electrocardiogram (ECG) stands as a pivotal tool in cardiovascular disease diagnosis, widely embraced within clinical domains for its simplicity and effectiveness. This paper presents a novel method for classifying ECG signals by leveraging deep learning techniques, specifically Long Short-Term Memory (LSTM) networks enhanced with an attention mechanism. ECG signals encapsulate vital insights into cardiac activities and abnormalities, underscoring the importance of precise classification for diagnosing heart conditions. Conventional methods often confront with the intricate variability of ECG signals, prompting the exploration of sophisticated machine learning models. Within this framework, an attention mechanism is seamlessly integrated into the LSTM architecture, dynamically assigning significance to different segments of the input sequence. This adaptive mechanism permits the model to focus on relevant features for classification, thereby bolstering interpretability and performance by highlighting crucial aspects within the ECG signals. Experiments conducted on the MIT/BIH dataset have yielded compelling findings, boasting an impressive overall classification accuracy of 98.9%. Precision stands at 0.993, recall at 0.992, and the F1 score at 0.99, underscoring the robustness of the results. These findings underscore the potential of the proposed methodology in significantly enhancing ECG signal analysis, thereby facilitating more accurate diagnosis and treatment decisions in the realm of cardiac healthcare.
Improving Kidney Stone Detection with YOLOV10 and Channel Attention Mechanisms in Medical Imaging Bala, Saroj; Arora, Kumud; V, Satheeswaran; S, Mohan; J, Deepika; K, Sangamithrai; Doss, Amala Nirmal
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 7 No 3 (2025): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v7i3.868

Abstract

Accurate and timely detection of kidney stones is crucial for effective medical intervention and treatment planning. However, existing detection methods often struggle with challenges related to sensitivity, precision, and the ability to process complex and variable medical images. In this study, an advanced kidney stone detection system is developed using the latest object detection algorithm, You Only Look Once version 10 (YOLOv10), integrated with channel attention mechanisms to enhance model performance. This combination aims to improve detection accuracy by enabling the network to focus more precisely on critical regions in medical images, particularly in Computed Tomography (CT) scans, where kidney stones may appear in varying shapes, sizes, and intensities. The proposed system begins with data augmentation techniques, such as rotation, scaling, and contrast adjustments, to enhance the model’s generalization ability across different image conditions and patient profiles. YOLOv10 was selected due to its lightweight architecture, high detection speed, and enhanced performance in small object detection tasks. To further improve feature extraction, channel attention mechanisms such as Squeeze-and-Excitation (SE) blocks or Efficient Channel Attention (ECA) modules are incorporated. These modules enable the network to selectively focus on the most informative feature channels associated with kidney stone regions, while suppressing irrelevant background information, thereby improving the distinction between stones and surrounding tissues. The model is trained and fine-tuned using a diverse CT scan dataset containing various types and sizes of kidney stones. Evaluation results demonstrate that the proposed model achieves a high detection accuracy of 93.7% with a very low loss of 0.18. It exhibits stability without issues like overfitting, underfitting, or local minima entrapment, making it a highly reliable tool for clinical applications.