Rofiani, Rofiani
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Studi Kelayakan Desa Wisata Kahianga Di Kabupaten Wakatobi Rahman, Abdu; Sabran , Sabran; Rofiani, Rofiani; Khatimah, Husnul; Badollahi, Muhammad Zainuddin
Jambura Journal of Educational Management Volume 5 Nomor 2, September 2024
Publisher : JURUSAN MANAJEMEN PENDIDIKAN FAKULTAS ILMU PENDIDIKAN UNIVERSITAS NEGERI GORONTALO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37411/jjem.v5i2.3564

Abstract

Studi ini bertujuan untuk mengevaluasi kelayakan Desa Wisata Kahianga di Kabupaten Wakatobi dengan menggunakan analisis SWOT. Analisis dilakukan dengan mengidentifikasi kekuatan, kelemahan, peluang, dan ancaman yang dihadapi desa dalam pengembangan pariwisata. Hasil analisis menunjukkan bahwa Desa Kahianga memiliki potensi besar sebagai destinasi wisata yang menarik, didukung oleh keindahan alam, kekayaan budaya, dan keterlibatan masyarakat dalam kegiatan produktif. Namun, desa ini juga menghadapi beberapa tantangan, termasuk infrastruktur pariwisata yang kurang memadai dan kurangnya kesadaran lingkungan. Implikasi dari temuan ini adalah perlunya fokus pada pengembangan infrastruktur pariwisata, peningkatan kesadaran lingkungan, dan pemberdayaan ekonomi lokal melalui kerajinan tangan dan produksi kopi. Studi ini memberikan sumbangan penting dalam memahami potensi dan tantangan yang dihadapi Desa Kahianga, sambil memberikan arah bagi penelitian masa depan untuk memperkuat dan memperluas dampak positif pengembangan pariwisata di wilayah tersebut
Decision Tree Classification for Reducing Alert Fatigue in Patient Monitoring Systems Herfiani, Kheisya Talitha; Nurhindarto, Aris; Alzami, Farrikh; Budi, Setyo; Megantara, Rama Aria; Soeleman, M Arief; Handoko, L Budi; Rofiani, Rofiani
Building of Informatics, Technology and Science (BITS) Vol 7 No 3 (2025): December 2025
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v7i3.8414

Abstract

The development of information technology in healthcare opens new opportunities to improve continuous patient monitoring. A major challenge is alert fatigue, where medical personnel are overwhelmed by excessive notifications, reducing concentration, work efficiency, and potentially compromising patient safety. This study presents a proof-of-concept application of the Decision Tree algorithm to analyze alert triggering factors in patient monitoring systems. The dataset is a synthetic health monitoring dataset from Kaggle, containing 10,000 entries with vital parameters including blood pressure, heart rate, oxygen saturation, and glucose levels, designed with deterministic logical relationships between threshold indicators and alert outcomes. The imbalanced dataset (73.67% alert triggered, 26.33% no alert) was intentionally not processed using imbalanced learning techniques to demonstrate Decision Tree's capability in processing structured health data and producing interpretable classifications. The research methodology included data preprocessing, exploratory data analysis, data splitting (90% training, 10% testing), GridSearchCV optimization, and performance evaluation. Results showed perfect metrics (100% accuracy, precision, recall, F1-score), reflecting the deterministic nature of the synthetic dataset rather than real-world clinical complexity. Feature importance analysis identified blood pressure as the most dominant variable, followed by heart rate and glucose levels. This study demonstrates Decision Tree's interpretability and feature importance analysis capabilities in health data contexts, establishing a methodological framework that requires validation on real clinical Electronic Health Record (EHR) data for practical application in reducing alert fatigue and supporting informed clinical decisions.