Muhammad Erdiansyah
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Metode XGBoost Dalam Seleksi Atribut Pada Algoritma K-Means Untuk Clustering Masyarakat Penerima Bantuan Langsung Tunai Amiruddin; Maryam Hasan; Muhammad Erdiansyah
Jurnal Ilmiah Ilmu Komputer Banthayo Lo Komputer Vol 3 No 2 (2024): November 2024
Publisher : Teknik Informatika Fakultas Ilmu Komputer Universitas Ichsan Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37195/balok.v3i2.1193

Abstract

Penelitian ini mengkaji implementasi metode XGBoost dalam seleksi atribut pada algoritma K-Means untuk clustering masyarakat penerima Bantuan Langsung Tunai (BLT). Dalam konteks ini, 14 atribut awal digunakan untuk menggambarkan karakteristik rumah tangga penerima BLT: Luas Lantai, Lantai Rumah, Dinding Rumah, MCK, Sumber Listrik, Sumber Air, Bahan Bakar, Konsumsi, Pakaian, Tidak Sanggup Berobat, Sumber Penghasilan KK, Penghasilan KK, Pendidikan KK, dan Tabungan. Metode XGBoost diaplikasikan untuk menyeleksi atribut yang paling relevan dalam menentukan kelompok penerima BLT. Dari hasil seleksi, ditemukan tiga atribut penting yaitu Luas Lantai, Lantai Rumah, dan Penghasilan KK. Implementasi K-Means clustering dilakukan dua kali, pertama menggunakan seluruh atribut dan kedua menggunakan tiga atribut penting yang telah diseleksi oleh XGBoost. Analisis hasil clustering menunjukkan bahwa sebelum seleksi atribut, nilai Davies-Bouldin Index (DBI) sebesar 1.325. Setelah seleksi atribut penting, nilai DBI menurun menjadi 0.800. Penurunan nilai DBI sebesar 0.525 ini mengindikasikan bahwa hasil clustering menjadi lebih optimal setelah penerapan XGBoost. Dengan demikian, penelitian ini menyimpulkan bahwa penggunaan XGBoost untuk seleksi atribut dapat meningkatkan kinerja K-Means dalam clustering masyarakat penerima BLT, menghasilkan grup yang lebih jelas dan homogen. Temuan ini memiliki implikasi penting untuk meningkatkan efisiensi dan efektivitas program penyaluran BLT dengan mendasarkan keputusan pada atribut yang paling berpengaruh. Kata Kunci: XGBoost, K-Menas, Clustering, Seleksi Atribut, Bantuan Langsung Tunai