Naja, Naella Nabila Putri Wahyuning
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Intelligent Decision Support System (IDSS)

Application of machine learning for election data classification in Tegal city based on political party support Andriani, Wresti; Gunawan, Gunawan; Naja, Naella Nabila Putri Wahyuning; Anandianskha, Sawaviyya
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 4 (2024): December: Intelligent Decision Support System
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Elections are a critical aspect of democracy, where voter sentiment and political party support significantly influence outcomes. This study aims to predict election results in Tegal City using machine learning models, specifically Neural Networks, Random Forest, and Naive Bayes. Each algorithm was applied to a dataset containing demographic, polling, and Sentiment data to analyze political party support. The research revealed that Neural Networks outperformed other models in terms of accuracy (92%) and F1 scores for both positive (91%) and negative sentiments (92%). Random Forest and Naive Bayes, while effective, displayed lower overall performance. The findings highlight the value of utilizing advanced algorithms for local election sentiment analysis to help candidates adjust campaign strategies. This approach enhances understanding of voter behavior and supports more informed decision-making processes for the public and policymakers
Machine learning algorithm-based decision support system for prime bank stock trend prediction Gunawan, Gunawan; Budiono, Wahyu; Andriani, Wresti; Naja, Naella Nabila Putri Wahyuning
Journal of Intelligent Decision Support System (IDSS) Vol 7 No 1 (2024): March: Intelligent Decision Support System (IDSS)
Publisher : Institute of Computer Science (IOCS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35335/idss.v7i1.207

Abstract

In the complex landscape of financial markets, predicting bank stock trends is a critical aspect that supports more accurate investment decision-making. This study aims to develop and evaluate machine learning algorithms—Random Forest, Support Vector Machine (SVM), and Artificial Neural Network (ANN)—for predicting the trends of major bank stocks in Indonesia using the IDX-PEFINDO dataset from January 1, 2020, to December 31, 2023. The adopted methodology includes collecting historical data, initial processing, feature selection, and training and validating models using evaluation metrics such as Accuracy, Precision, Recall, F1-Score, MAE, and RMSE. Results indicate that although no single algorithm is dominant, SVM and ANN perform better within the given data context. This research underscores the importance of a tailored approach to maximize the potential of machine learning algorithms in stock prediction, providing new insights into developing decision support systems for bank stock investments. This study implies that it recommends the integration of broader economic indicators and the exploration of advanced machine-learning techniques to enhance stock prediction accuracy in the future.