Rustam, Suhardi
Program Studi Teknik Informatika Fakultas Ilmu Komputer Univeristas Muslim Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISA CLUSTERING PHISING DENGAN K-MEANS DALAM MENINGKATKAN KEAMANAN KOMPUTER Rustam, Suhardi
ILKOM Jurnal Ilmiah Vol 10, No 2 (2018)
Publisher : Program Studi Teknik Informatika Fakultas Ilmu Komputer Univeristas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (415.528 KB)

Abstract

Almost the crime in cyber is a condition of criminal activity using computers or computer networks as tools and also as a target. Fraud in academic websites the most at risk. The action of Phishing is on the rise. Recorded globally, the number of fraudulent mode phishing 42% of the mode in addition to phishing which is stated in the website Anti-Phishing Working Group (APWG) in its monthly report, noting there 12.845 e-mail new and unique as well as 2.560 a fake site that is used as a means of phishing, in Addition to increase the quantity, the quality of the attacks is also increasing, the need for the work done by the network administrator in improving surveillance in monitoring activity on the network, in the action of data theft will perform the action of manipulating someone with the appearance of a particular web site. In this study a set of datasets will be clustering using k-means, K-Means algorithm will classify the dataset, resulted in the identification of phishing that is accurate and certifiable. With the results of this research iteration=10, the K-Fold=2 the of the Bouldin Davis index = 0.119.
OPTIMASI K-MEANS CLUSTERING UNTUK IDENTIFIKASI DAERAH ENDEMIK PENYAKIT MENULAR DENGAN ALGORITMA PARTICLE SWARM OPTIMIZATION DI KOTA SEMARANG Rustam, Suhardi; Santoso, Heru Agus; Supriyanto, Catur
ILKOM Jurnal Ilmiah Vol 10, No 3 (2018)
Publisher : Program Studi Teknik Informatika Fakultas Ilmu Komputer Univeristas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (585.534 KB) | DOI: 10.33096/ilkom.v10i3.342.251-259

Abstract

Tropical regions is a region endemic to various infectious diseases. At the same time an area of high potential for the presence of infectious diseases. Infectious diseases still a major public health problem in Indonesia. Identification of endemic areas of infectious diseases is an important issue in the field of health, the average level of patients with physical disabilities and death are sourced from infectious diseases. Data Mining in its development into one of the main trends in the processing of the data. Data Mining could effectively identify the endemic regions of hubunngan between variables. K-means algorithm klustering used to classify the endemic areas so that the identification of endemic infectious diseases can be achieved with the level of validation that the maximum in the clustering. The use of optimization to identify the endemic areas of infectious diseases combines k-means clustering algorithm with optimization particle swarm optimization ( PSO ). the results of the experiment are endemic to the k-means algorithm with iteration =10, the K-Fold =2 has Index davies bauldin = 0.169 and k-means algorithm with PSO, iteration = 10, the K-Fold = 5, index davies bouldin = 0.113. k-fold = 5 has better performance.