Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : JUKI : Jurnal Komputer dan Informatika

Pengembangan Model Klasifikasi Citra Tanaman Hutan Melicope latifolia Berbasis CNN dengan Custom-Built Dataset Annisa, Resty; Mardiana, Mardiana; Martinus, Martinus; Putri, Renatha Amelia Manggala; Febriyani, Cela; Afif, Muhkito
JUKI : Jurnal Komputer dan Informatika Vol. 6 No. 2 (2024): JUKI : Jurnal Komputer dan Informatika, Edisi Nopember 2024
Publisher : Yayasan Kita Menulis

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Melicope latifolia, atau dikenal sebagai Pauh-Pauh, adalah tanaman hutan dari famili Rutaceae yang memiliki manfaat kesehatan sebagai anti-hepatitis C virus. Pengembangan model klasifikasi citra berbasis Convolutional Neural Network (CNN) dilakukan untuk mengenali berbagai bagian tanaman Melicope latifolia, yang saat ini masih kekurangan dataset. Dataset khusus yang dikumpulkan terdiri dari 400 citra berkualitas tinggi mencakup batang, buah, daun, dan ranting, dan dibagi menjadi data pelatihan, validasi, dan pengujian dengan rasio 70:10:20. Model CNN dilatih selama 200 epoch, dan evaluasi kinerja menggunakan metrik akurasi, precision, recall, dan F1-score. Hasil menunjukkan bahwa model mencapai akurasi tertinggi sebesar 89,17%, dengan performa terbaik pada kelas "buah" yang memiliki precision dan recall sebesar 100%. Hasil ini menunjukkan potensi penerapan CNN dalam klasifikasi tanaman Melicope latifolia, meskipun diperlukan optimasi lebih lanjut, seperti augmentasi data dan penyesuaian parameter.