Farodisa, Annida Miftakhul
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Deep Learning for Karolinska Sleepiness Scale Classification Based On Eye Aspect Ratio with SMOTE-Enhanced Data Balancing Zaini, Ahmad; Yuniarno, Eko Mulyanto; Suprapto, Yoyon K; Farodisa, Annida Miftakhul
Jurnal Nasional Pendidikan Teknik Informatika : JANAPATI Vol. 13 No. 3 (2024)
Publisher : Prodi Pendidikan Teknik Informatika Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/janapati.v13i3.84962

Abstract

This paper addresses the challenge of accurately classifying sleepiness levels based on the Karolinska Sleepiness Scale (KSS) using Eye Aspect Ratio (EAR) data, especially when class imbalance leads to biased predictions. The research proposes a deep learning framework that integrates a Multi-Layer Perceptron (MLP) with the Synthetic Minority Over-sampling Technique (SMOTE) to balance the training data. EAR features, representing eye closure patterns, are extracted from video frames, and SMOTE is applied to generate synthetic data for underrepresented sleepiness classes. By training the MLP model on this balanced dataset, the system achieves a 97.6% classification accuracy in distinguishing four distinct sleepiness levels based on the KSS, demonstrating its effectiveness in reducing prediction bias and managing class imbalance, both crucial for real-time drowsiness detection systems