Claim Missing Document
Check
Articles

Found 1 Documents
Search

On New Results of Stability and Synchronization in Finite-Time for Fitiz-Nagamo Model Using Grownal Inequality and Lyapunov Function Batiha, Iqbal M.; Bendib, Issam; Ouannas, Adel; Jebril, Iqbal H.; Alkhazaleh, Shawkat; Momani, Shaher
Journal of Robotics and Control (JRC) Vol. 5 No. 6 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i6.23211

Abstract

Ionic diffusion across cytomembranes plays a critical role in both biological and chemical systems. This paper reexamines the FitzHugh-Nagumo reaction-diffusion system, specifically incorporating the influence of diffusion on the system’s dynamics. We focus on the system’s finite-time stability, demonstrating that it achieves and maintains equilibrium within a specified time interval. Unlike asymptotic stability, which ensures long-term convergence, finite-time stability guarantees rapid convergence to equilibrium, a crucial feature for real-time control applications. We prove that the equilibrium point of the FitzHugh-Nagumo system exhibits finite-time stability under certain conditions. In particular, we provide a criterion for finite-time stability and derive results using new lemmas and a theorem to guide the system’s design for reliable performance. Additionally, the paper discusses finite-time synchronization in reaction-diffusion systems, emphasizing its importance for achieving coherent dynamics across distributed components within a finite time. This approach has significant implications for fields requiring precise control and synchronization, such as sensor networks and autonomous systems. Practical simulations are presented to elucidate the theoretical principles discussed earlier, using the finite difference method (FDM) implemented in MATLAB.