Yusni, Y
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

CNN Performance Improvement for Classifying Stunted Facial Images Using Early Stopping Approach Yunidar, Yunidar; Yusni, Y; Nasaruddin, N; Arnia, Fitri
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 9 No 1 (2025): February 2025
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v9i1.6068

Abstract

Stunting, a condition characterised by short stature, is a growth disorder caused by chronic malnutrition, which often begins in the womb. Children affected by stunting usually show different physical and cognitive characteristics compared to their peers. Research shows that these physical differences can also be observed in facial features. Because faces provide important information and are commonly studied in digital image processing, in this study, we will compare the facial image classification performance of stunted children versus normal children using various Convolutional Neural Network (CNN) architectures. The evaluated architectures include MobileNetV2, InceptionV3, VGG19, ResNet18, EfficientNetB0, and AlexNet. To improve the learning process, augmentation techniques with Haar cascade and Gaussian filters were applied so that the data set increased from 1,000 to 6,000 images. After adding the dataset, training is carried out with an early stop approach to minimise overfitting. The main aim of this research is to identify the CNN model that is most effective in differentiating facial images of stunted children from normal children. The results show that the EfficientNetB0 architecture outperforms other models, achieving 100% accuracy. Early stopping has been shown to improve training efficiency and help prevent overfitting.