Bhoopal, Sowmyashree
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Enhanced diabetic retinopathy detection and classification using fundus images with ResNet50 and CLAHE-GAN Bhoopal, Sowmyashree; Rao, Mahesh; Krishnappa, Chethan Hasigala
Indonesian Journal of Electrical Engineering and Computer Science Vol 35, No 1: July 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v35.i1.pp366-377

Abstract

Diabetic retinopathy (DR), a progressive eye disorder, can lead to irreversible vision impairment ranging from no DR to severe DR, necessitating precise identification for early treatment. This study introduces an innovative deep learning (DL) approach, surpassing traditional methods in detecting DR stages. It evaluated two scenarios for training DL models on balanced datasets. The first employed image enhancement via contrast limited adaptive histogram equalization (CLAHE) and a generative adversarial network (GAN), while the second did not involve any image enhancement. Tested on the Asia pacific tele-ophthalmology society 2019 blindness detection (APTOS-2019 BD) dataset, the enhanced model (scenario 1) reached 98% accuracy and a 99% Cohen kappa score (CKS), with the non-enhanced model (scenario 2) achieving 95.4% accuracy and a 90.5% CKS. The combination of CLAHE and GAN, termed CLANG, significantly boosted the model's performance and generalizability. This advancement is pivotal for early DR detection and intervention, offering a new pathway to prevent irreversible vision loss in diabetic patients.