S., Suriya
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Predicting peak demand for electricity consumption using time series data and machine learning model S., Suriya; R., Agusthiyar
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 1: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i1.pp668-676

Abstract

Energy consumption is influenced by various factors, including the proliferation of electronic devices, technological advancements, economic growth, agricultural development, and population increase. Each of these factors contributes to the rising demand for energy. This paper addresses the challenge of predicting peak energy demand (ED) by utilizing historical time series data from the past five years, combined with temperature data from Tamil Nadu’s official sources. We employed feature engineering techniques to prepare the data for machine learning models, specifically XGBoost regressor, lasso, and ridge regression. The time series data was then analyzed using both univariate and multivariate models, including auto regressive integrated moving average (ARIMA) and vector autoregressive (VAR) models. The results show that our models can effectively forecast ED, providing critical insights for policymakers and stakeholders involved in energy planning and resource management.