Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS SENTIMEN KOMENTAR YOUTUBE TERKAIT PENERAPAN MAKAN BERGIZI GRATIS MENGGUNAKAN MODEL ALGORITMA SVM Riwanto, Muhammad Hilmy; Ardhiyansyah, Pramudhitya; Adiansyah, Riski Abimur; Alfiansyah, Afif; Waek, Gregorius; Fahlapi, Riza
Kohesi: Jurnal Sains dan Teknologi Vol. 6 No. 12 (2025): Kohesi: Jurnal Sains dan Teknologi
Publisher : CV SWA Anugerah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.3785/kohesi.v6i12.10912

Abstract

Penerapan program makan bergizi gratis adalah langkah yang strategis meningkatkan kesejahteraan masyarakat, terutama kelompok rentan. Penelitian ini menganalisis persepsi sentimen masyarakat terhadap program tersebut melalui komentar YouTube menggunakan algoritma “Support Vector Machine (SVM).”Data diperoleh melalui web scraping komentar dari video YouTube yang relevan. Tahapan analisis meliputi pengumpulan data, pra-pemrosesan (pembersihan teks, penghapusan kata tidak relevan, tokenisasi), dan ekstraksi fitur menggunakan TF-IDF. SVM digunakan untuk mengklasifikasikan komentar menjadi sentimen positif, negatif, dan netral, dengan evaluasi menggunakan presisi, recall, dan F1-score. Hasil menunjukkan akurasi model sebesar 84,17%. Sebagian besar komentar bernada positif, mencerminkan dukungan publik, meski ada kritik terkait distribusi dan sosialisasi program. Komentar netral cenderung informatif tanpa opini eksplisit. Penelitian ini memberikan wawasan penting bagi evaluasi program oleh pemerintah, membantu meningkatkan kualitas implementasi melalui respon publik yang lebih terukur. Analisis sentimen berbasis algoritma terbukti efektif dalam memahami data teks berskala besar dan tidak terstruktur. The implementation of the free nutritious meal program is a strategic step to improve community welfare, particularly for vulnerable groups. This study analyzes public sentiment perceptions of the program through YouTube comments using the "Support Vector Machine (SVM)" algorithm. Data was collected through web scraping of relevant YouTube video comments. The analysis phases include data collection, preprocessing (text cleaning, removal of irrelevant words, tokenization), and feature extraction using TF-IDF. SVM was employed to classify comments into positive, negative, and neutral sentiments, with evaluation metrics including precision, recall, and F1-score. The results showed a model accuracy of 84.17%. Most comments were positive, reflecting public support, although there were criticisms related to program distribution and socialization. Neutral comments were generally informative without explicit opinions. This study provides valuable insights for government program evaluations, helping to improve implementation quality through more measurable public responses. Algorithm-based sentiment analysis has proven effective in understanding large-scale and unstructured text data.
Klasifikasi Penyakit Asma Menggunakan Algoritma Decision Tree Pada Rapidminer Ardhiyansyah, Pramudhitya; ., Abdurrazzaq; Alfiansyah, Afif; Hilmy Riwanto, Muhammad; Gultom, Sahdia; Shipa, Erna Grace; Ramdani Koswara, Mochamad Fauzi; Garamba, Yafianus
Jurnal Ilmu Komputer dan Informatika | E-ISSN : 3063-9026 Vol. 2 No. 3 (2026): Januari - Maret
Publisher : GLOBAL SCIENTS PUBLISHER

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Asthma is a disease characterized by chronic inflammation of the respiratory system with a relatively high recurrence rate in Indonesia. This condition highlights the need for a data-driven approach to support a more objective and systematic disease classification process. This study aims to classify asthma by applying the Decision Tree algorithm, which is implemented using RapidMiner software as an analytical tool. This research adopts the CRISP-DM framework as the research workflow, encompassing the stages of problem understanding, data understanding, data preparation, modeling, evaluation, and deployment. The dataset used is secondary data obtained from the Kaggle platform, with an initial total of 10,000 patient records. During the data preparation stage, data cleaning, transformation, feature selection, and class imbalance handling were performed, resulting in 4,866 data instances used for modeling. The evaluation results indicate that the Decision Tree model achieved an accuracy of 93.63%, with a precision value of 89.72% and a recall value of 98.56% for the asthma class. In addition to its strong performance, the resulting model is easily interpretable through clear decision rules, making it suitable as a decision-support tool for asthma disease classification.