Claim Missing Document
Check
Articles

Found 3 Documents
Search

Multi-Objective k-Nearest Neighbor for Breast Cancer Detection Nataliani, Yessica; Arthur, Christian; Wellem, Theophilus; Hartomo, Kristoko Dwi; Wahab, Nur Haliza Abdul
JOIV : International Journal on Informatics Visualization Vol 9, No 1 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.1.2669

Abstract

Early detection of cancer is crucial. This study aims to increase the efficiency of breast cancer detection using the modified k-nearest neighbor (k-NN) algorithm. Since k-NN faces challenges with sensitivity to k values and computational complexity, a modification of k-NN was proposed, namely a multi-objective k-NN model. It was developed to incorporate multi-objective optimization and local density to create a more robust and efficient classification algorithm. The model dynamically determines the k value based on the sample density, optimizing accuracy and efficiency. Breast cancer data were collected from the University of Wisconsin Hospitals, Madison. The experimental results showed that the multi-objective k-NN model outperformed traditional k-NN and k-NN with feedback support. The proposed model achieved an accuracy of 93.7%, with precision values of 93% for the negative cancer class and 94% for the positive cancer class. These results indicate that the multi-objective k-NN model provides superior accuracy and precision in breast cancer detection, demonstrating its potential for clinical applications.
BiLSTM OptiFlow: an enhanced LSTM model for cooperative financial health forecasting Maria, Evi; Wahyono, Teguh; Dwi Hartomo, Kristoko; Purwanto, Purwanto; Arthur, Christian
Bulletin of Electrical Engineering and Informatics Vol 14, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i3.8653

Abstract

This paper presents bidirectional long short-term memory (BiLSTM) OptiFlow, an optimized deep learning model designed to predict the financial health of cooperatives using key financial ratios: debt to equity ratio (DER), net profit margin (NPM), and return on equity (ROE). By leveraging a BiLSTM architecture combined with an optimal decayed learning rate, this model aims to enhance forecasting accuracy. The proposed model was tested against three established methods—recurrent neural network (RNN), long short-term memory (LSTM), and gated recurrent unit (GRU)—and evaluated using mean absolute error (MAE), mean absolute percentage error (MAPE), and mean squared error (MSE) metrics. Results indicate that BiLSTM OptiFlow outperforms the other models across all key indicators. This research offers a robust approach to cooperative financial forecasting, with significant implications for decision-making processes in cooperative management.
A Dual-Fusion Hybrid Model with Attention for Stunting Prediction among Children under Five Years Hadikurniawati, Wiwien; Hartomo, Kristoko Dwi; Sembiring, Irwan; Arthur, Christian
Journal of Applied Data Sciences Vol 6, No 3: September 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i3.831

Abstract

Malnutrition remains a persistent global health challenge, especially among children under five. Traditional assessment methods often rely on static anthropometric measures, which are limited in capturing complex growth patterns. This study aims to develop a robust classification model for predicting the nutritional status of children under five years old, addressing the critical public health challenge of stunting. The model contributes to the growing need for accurate, data-driven early detection systems in child health monitoring by introducing a hybrid framework that combines deep learning and classical machine learning techniques. The proposed approach integrates automatically extracted features from a One-Dimensional Convolutional Neural Network (1D-CNN) with classical anthropometric indicators. These combined features are processed through an additive attention mechanism, highlighting the most informative attributes. The attention-weighted representation is then classified using an ensemble stacking method that aggregates predictions from multiple base classifiers, including decision trees, nearest neighbor algorithms, support vector machines, etc. Synthetic Minority Over-sampling Technique (SMOTE) is applied to the training dataset to mitigate data imbalance, particularly the underrepresentation of severe and moderate malnutrition cases. The research utilizes a dataset comprising 2,789 records of children under five years old collected from community health posts in Indonesia. Data preprocessing included cleaning, normalization, and gender encoding. The model’s performance was evaluated using 5-fold cross-validation and measured by accuracy, precision, recall, and area under the curve metrics. The results show that the proposed model achieved an average accuracy of 99.70% and an area under the curve of 99.99%. An ablation study further demonstrated the significant contribution of each component, feature extraction, fusion mechanism, and ensemble classifier to the final performance. This approach reveals a robust and scalable solution for early nutritional status prediction in healthcare settings.