Sena Bayu Dewantara, Bima
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Face Recognition for Logging in Using Deep Learning for Liveness Detection on Healthcare Kiosks Ryando, Catoer; Sigit, Riyanto; Setiawardhana, Setiawardhana; Sena Bayu Dewantara, Bima
JOIV : International Journal on Informatics Visualization Vol 9, No 1 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.1.2759

Abstract

This study explores the enhancement of healthcare kiosks by integrating facial recognition and liveness detection technologies to address the limitations of healthcare service accessibility for a growing population. Healthcare kiosks increase efficiency, lessen the strain on conventional institutions, and promote accessibility. However, there are issues with conventional authentication methods like passwords and RFID, such as the possibility of them being lost, stolen, or hacked, which raises privacy and data security problems. Although it is more secure, face recognition is susceptible to spoofing attacks. In order to improve security, this study integrates liveness detection with face recognition. Data preparation is done using deep learning algorithms, namely FaceNet and Multi-task Cascaded Convolutional Neural Networks (MTCNN). Real-time authentication of persons is verified by the system, which provides correct identification of them. Techniques for enhancing data help the model become more accurate and robust. The system's usefulness is shown by the outcomes of the experiments. The VGG16 model outperforms alternative designs like MobileNet V2, ResNet-50, and DenseNet-121, achieving 100% accuracy in liveness detection. Face recognition and liveness detection together greatly improve security, which makes it a dependable option for real-world healthcare applications. Through the ability to differentiate between genuine and fake faces and foil spoofing efforts, facial liveness detection may boost security. This study offers insights into building biometric systems for safe and effective identity verification in the healthcare industry.