Claim Missing Document
Check
Articles

Found 2 Documents
Search

Batiknet: Batik Classification-based Management Application for Inexperienced User Putra, Muhammad Taufik Dwi; Pradana, Hilmil; Munawir, Munawir; Pradeka, Deden; Yuniarti, Ana Rahma; Sadik, Jafar; Andhika R, Muhammad
JOIV : International Journal on Informatics Visualization Vol 8, No 4 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.4.3086

Abstract

Batik has significantly contributed to the Indonesian economy, is diverse, and is spread throughout cities. Currently, batik patterns are very diverse and spread from Sabang to Merauke. Each batik pattern holds distinct meanings, philosophies of life, and ancestral heritage and reflects the region where it was crafted. We introduce a new batik dataset containing five patterns: Kawung, Megamendung, Parang, Sekarjagad, and Truntum. The Convolutional Neural Network (CNN) method is an effective Deep Learning method for extracting image information. CNNs have become the state of the art for various image processing tasks, such as classification, segmentation, and object recognition. This study used several state-of-the-art architectures, including Xception, ResNet50V2, MobileNetV2, and DenseNet169. However, we chose EfficientNetV2 as the primary feature extractor due to its superior performance. Our results show that EfficientNetV2 outperformed other architectures in training, validation, and testing accuracy, making it the best choice for classifying batik patterns. The training process resulted in an accuracy of 98% for training, 97% for validation, and 96% for testing. To ensure the accessibility and practical application of this research, we developed a user-friendly, web-based interface with a RESTful API, making the tool accessible to a broader audience. The application is named "BatikNet," a name chosen to reflect the blend of traditional batik culture ("Batik") with neural network technology ("Net"). This research contributes a valuable dataset and a practical tool for future studies and applications in batik pattern recognition and supports the preservation and understanding of Indonesian cultural heritage
An Adaptive Stacking An Adaptive Stacking Approach for Monthly Rainfall Prediction with Hybrid Feature Selection: Hybrid Feature Selection Zulfa, Ahmad; Saikhu, Ahmad; Pradana, Hilmil; Budiawan, Irvan
ULTIMA Computing Vol 17 No 1 (2025): Ultima Computing: Jurnal Sistem Komputer
Publisher : Faculty of Engineering and Informatics, Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/sk.v17i1.4157

Abstract

Rainfall is a critical climatic element for water resource management, agriculture, and hydrometeorological disaster mitigation. However, its nonlinear and fluctuating characteristics require a careful and adaptive predictive approach. This study aims to develop a monthly rainfall prediction model using an Adaptive Stacking Ensemble method combined with a hybrid feature selection framework. The feature selection integrates three techniques”correlation analysis, feature importance from Random Forest, and Recursive Feature Elimination (RFE)”through a voting mechanism. Three machine learning algorithms, namely Random Forest, K-Nearest Neighbors (KNN), and XGBoost, are used as base learners. The meta-learner is adaptively selected based on the best-performing base model. Model performance is evaluated using R², RMSE, and MAE metrics. The proposed method is expected to produce a more accurate, stable, and reliable predictive model to support climate-based decision-making. By leveraging the hybrid feature selection framework, the model effectively identifies the most relevant weather variables related to monthly rainfall patterns, thereby reducing model complexity without sacrificing accuracy. The adaptive stacking approach also offers flexibility in capturing nonlinear relationships between features and targets, while enhancing model generalization across seasonally varying data. Experiments were conducted on long-term weather datasets, and the results demonstrate that the proposed model outperforms single models and conventional ensemble methods. This research contributes to the development of more robust, data-driven climate prediction systems that can be applied across sectors affected by rainfall variability.