Claim Missing Document
Check
Articles

Found 2 Documents
Search

Handwritten text recognition system using Raspberry Pi with OpenCV TensorFlow Alsayaydeh, Jamil Abedalrahim Jamil; Jie, Tommy Lee Chuin; Bacarra, Rex; Ogunshola, Benny; Yaacob, Noorayisahbe Mohd
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i2.pp2291-2303

Abstract

Handwritten text recognition (HTR) technology has brought about a revolution in the way handwritten data is converted and analyzed. This proposed work focuses on developing a HTR system using deep learning through advanced deep learning architecture and techniques. The aim is to create a model for real-time analysis and detection of handwritten texts. The proposed deep learning architecture that is convolutional neural networks (CNNs), is investigated and implemented with tools like OpenCV and TensorFlow. The model is trained on large handwritten datasets to enhance recognition accuracy. The system’s performance is evaluated based on accuracy, precision, real-time capabilities, and potential for deployment on platforms like Raspberry Pi. The actual outcome is a robust HTR system that can convert handwritten text to digital formats accurately. The developed system has achieved a high accuracy rate of 91.58% in recognizing English alphabets and digits and outperformed other models with 81.77% mAP, 78.85% precision, 79.32% recall, 79.46% F1-Score, and 82.4% receiver operating characteristic (ROC). This research contributes to the advancement of HTR technology by enhancing its precision and utility.
Artificial intelligence for automatic moderation of textual content in online chats and social networks Liaskovska, Solomiia; Bacarra, Rex; Martyn, Yevhen; Baidych, Volodymyr; Alsayaydeh, Jamil
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 3: June 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i3.pp3396-3409

Abstract

The article explores fundamental techniques for converting text into numerical data for machine learning algorithms. It meticulously examines various methods, including word vector representation via neural networks like Word2Vec, and explains the principles behind linear models such as logistic regression and support vector machines. Convolutional neural networks (CNN) and long short-term memory (LSTM) methods are also discussed, covering their components, mechanisms, and training processes. The research extends to developing and testing software for spam detection, hate speech identification, and recognizing offensive language. Using two datasets—one for labeled text messages and another for Twitter posts—the study analyzes data to address challenges like imbalanced data. A comparative analysis among linear models, deep neural networks, and single-layer models, using pre-trained bidirectional encoder representations from transformers (BERT) network, reveals promising results. The convolutional neural network stands out with a remarkable accuracy of 0.95. The study also adapts neural network architectures for hate speech and offensive language classification.