Claim Missing Document
Check
Articles

Found 2 Documents
Search

Evaluating the Impact of Particle Swarm Optimization Based Feature Selection on Support Vector Machine Performance in Coral Reef Health Classification Bastiaans, Jessica Carmelita; Hartojo, James; Pramunendar, Ricardus Anggi; Andono, Pulung Nurtantio
IJNMT (International Journal of New Media Technology) Vol 11 No 2 (2024): Vol 11 No 2 (2024): IJNMT (International Journal of New Media Technology)
Publisher : Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ijnmt.v11i2.3761

Abstract

This research explores improving coral reef image classification accuracy by combining Histogram of Oriented Gradients (HOG) feature extraction, image classification with Support Vector Machine (SVM), and feature selection with Particle Swarm Optimization (PSO). Given the ecological importance of coral reefs and the threats they face, accurate classification of coral reef health is essential for conservation efforts. This study used healthy, whitish, and dead coral reef datasets divided into training, validation, and test data. The proposed approach successfully improved the classification accuracy significantly, reaching 85.44% with the SVM model optimized by PSO, compared to 79.11% in the original SVM model. PSO not only improves accuracy but also reduces running time, demonstrating its effectiveness and computational efficiency. The results of this study highlight the potential of PSO in optimizing machine learning models, especially in complex image classification tasks. While the results obtained are promising, the study acknowledges several limitations, including the need for further validation with larger and more diverse datasets to ensure model robustness and generalizability. This research contributes to the field of marine ecology by providing a more accurate and efficient coral reef classification method, which can be applied to other image classifications.
Enhancing Support Vector Machine Classification of Nutrient Deficiency in Rice Plants Through Particle Swarm Optimization-Based Feature Selection Hartojo, James; Bastiaans, Jessica Carmelita; Pramunendar, Ricardus Anggi; Andono, Pulung Nurtantio
IJNMT (International Journal of New Media Technology) Vol 11 No 2 (2024): Vol 11 No 2 (2024): IJNMT (International Journal of New Media Technology)
Publisher : Universitas Multimedia Nusantara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31937/ijnmt.v11i2.3762

Abstract

The research focuses on the classification of nutrient deficiencies in rice plant leaves using a combination of Support Vector Machine (SVM) and Particle Swarm Optimization (PSO) methods for feature selection. Image features are extracted using Histogram of Oriented Gradients (HOG), which is then optimized with PSO to select the most relevant features in the classification process. Indonesia is one of the largest rice producers in the world, with food security as a major issue that requires sustainable solutions, especially in the agricultural sector. The growth and yield of rice plants are highly dependent on the availability of nutrients such as Nitrogen (N), Phosphorus (P), and Potassium (K). However, traditional observation methods to detect nutrient deficiencies in plants become inefficient as the scale of production increases. The dataset used includes images of rice leaves showing nitrogen (N), phosphorus (P), and potassium (K) deficiencies. Experiments show that the SVM model optimized with PSO provides a classification accuracy of 83.19% and a runtime of 129.63 seconds with 1150 best feature combinations out of 2303 extracted features, which is higher accuracy and faster runtime than the model that does not use PSO. These results show that the integration of PSO in the feature selection process not only improves the accuracy of the model, but also reduces the required computation time. This research makes an important contribution to the development of an automated system for the classification of nutrient deficiencies in crops, which can be implemented in large farms or other agricultural fields.