Abstrak - Diabetes merupakan penyakit yang bukan hanya menyerang orang dengan usia lanjut, akan tetapi saat ini banyak pula anak remaja bahkan anak dibawah umur yang sudah menderita diabetes. Hal ini dikarenakan pola hidup yang tidak sehat. Disamping makanan dan minuman yang dikonsumsi banyak mengandung gula, penyakit ini juga sering disebabkan oleh kurangnya aktivitas pada sehari-hari. Maka dirasa sangat perlu dilakukan penelitian semacam ini guna mencegah dan juga menolong untuk mengobati pasien yang sudah terkena penyakit diabetes maupun yang beresiko terkena penyakit diabetes. Maka untuk membantu dalam bidang kesehatan, maka dilaksanakan penelitian ini dengan menggunakan metode algoritma Decision Tree, dan menggunakan tools RapidMiner. Dalam penggunaan metode algoritma Decision Tree dalam klasifikasi penyakit diabetes hasil Akurasi yang dihasilkan yaitu 77,34% , Precision yaitu 75,08%, Recall 97,60%, dan F1 Score sebesar 0,8486, hal ini menunjukkan bahwa ketepatan akurasi dalam memprediksi klasifikasi data penyakit diabetes dengan menggunakan metode decision tree adalah 84,86%. Sehingga dirasa metode ini memiliki tingkat akurasi yang cukup tinggi.Kata kunci: Data Mining, Klasifikasi, Diabetes, Pohon Keputusan, Rapid Miner Abstract - Diabetes is a disease that not only attacks people with old age, but currently many teenagers and even minors already suffer from diabetes. This is due to an unhealthy lifestyle. In addition to the food and drinks consumed containing a lot of sugar, this disease is also often caused by a lack of daily activity. So it is felt that this kind of research is very necessary to prevent and also help treat patients who already have diabetes or who are at risk of developing diabetes. So to help in the health sector, this research was carried out using the Decision Tree algorithm method, and using the RapidMiner tool. In using the Decision Tree algorithm method in the classification of diabetes, the resulting Accuracy results are 77.34%, Precision is 75.08%, Recall 97.60%, and F1 Score of 0,8486, this shows that the accuracy of the accuracy in predicting the classification of diabetes data using the decision tree method is 84.86%. So it is felt that this method has a fairly high level of accuracy.Keywords:Data Mining, Classification, Decision Tree, Diabetes, Rapid Miner