p-Index From 2020 - 2025
0.408
P-Index
This Author published in this journals
All Journal Infotekmesin
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Prediksi Diabetes menggunakan Metode Ensemble Learning dengan Teknik Soft Voting Hilmi Hanif; Danang Wahyu Utomo
Infotekmesin Vol 16 No 1 (2025): Infotekmesin: Januari 2025
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v16i1.2534

Abstract

Diabetes is a chronic disease characterized by high blood glucose levels due to the body's inability to produce or use insulin effectively. This disease is one of the serious global health problems, and it has a significant impact; therefore, early detection is very important. Efforts to overcome this challenge can be made by applying machine learning, which provides a new and effective approach. This study aims to predict diabetes with a higher accuracy level through the Ensemble Learning Soft Voting method. In addition, the data balancing technique using SMOTE is applied to overcome the problem of imbalance in the data set. This study also compares various classification models using Machine Learning algorithms, namely LightGBM, XGBoost, and Random Forest. The test results show that the Random Forest model achieves the highest level of accuracy at 97.20%. In comparison, the Ensemble Learning Soft Voting method that combines the three algorithms has increased the accuracy to 97.74%. This Ensemble Learning approach has proven effective in significantly improving predictions and performing better than a single model.
Prediksi Diabetes menggunakan Metode Ensemble Learning dengan Teknik Soft Voting Hilmi Hanif; Danang Wahyu Utomo
Infotekmesin Vol 16 No 1 (2025): Infotekmesin: Januari 2025
Publisher : P3M Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/infotekmesin.v16i1.2534

Abstract

Diabetes is a chronic disease characterized by high blood glucose levels due to the body's inability to produce or use insulin effectively. This disease is one of the serious global health problems, and it has a significant impact; therefore, early detection is very important. Efforts to overcome this challenge can be made by applying machine learning, which provides a new and effective approach. This study aims to predict diabetes with a higher accuracy level through the Ensemble Learning Soft Voting method. In addition, the data balancing technique using SMOTE is applied to overcome the problem of imbalance in the data set. This study also compares various classification models using Machine Learning algorithms, namely LightGBM, XGBoost, and Random Forest. The test results show that the Random Forest model achieves the highest level of accuracy at 97.20%. In comparison, the Ensemble Learning Soft Voting method that combines the three algorithms has increased the accuracy to 97.74%. This Ensemble Learning approach has proven effective in significantly improving predictions and performing better than a single model.