Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Metode K-Nearest Neighbor (KNN) untuk Klasifikasi Kematangan Buah Kopi Amelia, Nerlys; Garonga, Melki; Rusman, Juprianus
The Indonesian Journal of Computer Science Vol. 12 No. 2 (2023): The Indonesian Journal of Computer Science
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i2.3171

Abstract

Perkebunan kopi di Indonesia berperan penting bagi masyarakat sebagai lapangan pekerjaan. Penentuan tingkat kematangan buah kopi yang masih dilakukan secara manual, baik secara racutan atau rampasan berdasarkan pengamatan secara subjektif. Kematangan buah kopi dapat dilihat dari tiga tingkatan yaitu matang, stengah matang dan mentah sehingga warna buah kopi dapat menjadi tolak ukur untuk mengenali tingkat kematangan serta kualitas buah kopi. Ekstraksi fitur warna merupakan salah satu teknik yang dapat digunakan untuk memperoleh informasi tingkat kematangan buah kopi dengan cara memunculkan ciri dari sebuah citra menggunakan fitur warna serta segmentasi tresholding. Total citra buah kopi yang digunakan dalam penelitian ini sebanyak 300, yang terdiri dari 100 citra buah kopi matang, 100 citra buah kopi stengah matang dan 100 citra buah kopi mentah. Dengan menggunakan fitur warna RGB dan HSV serta algoritma KNN untuk pengklasifikasian tingkat kematangan buah kopi, diperoleh hasil akurasi tertinggi dengan nilai K = 3 sebesar 95%.