Claim Missing Document
Check
Articles

Found 1 Documents
Search

Peramalan Kebutuhan Obat Menggunakan XGBoost Studi Kasus pada Rumah Sakit XYZ: Forecasting Drug Needs Using XGBoost: Case Study at XYZ Hospital Muhammad Dzul Asmi Alhamdi; Herman; Wistiani Astuti
The Indonesian Journal of Computer Science Vol. 12 No. 5 (2023): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v12i5.3344

Abstract

Obat memiliki peran yang penting dalam pelayanan farmasi di rumah sakit, dari menyelamatkan nyawa hingga menyembuhkan pasien, namun perencanaan obat masih dilakukan secara manual menggunakan metode manual sehingga menghambat proses perencanaan obat, penelitian ini menggunakan XGBoost untuk melakukan peramalan time series pada penggunaan obat. Data yang digunakan adalah data perbulan penggunaan obat pada kategori vital dan essential dari tahun 2017 hingga 2022, penelitian ini menggunakan data cuaca sebagai fitur eksternal untuk membantu model bekerja. Hasil penelitian menunjukkan model XGBoost memiliki skor rata-rata skor RMSE dan MAE yang lebih rendah pada obat vital dibanding ketika melatih obat essential, sehingga model yang dilatih masih perlu perbaikan dalam menggunakan model XGBoost untuk meningkatkan performa model.