Claim Missing Document
Check
Articles

Found 2 Documents
Search

Predictions of Early Hospitalization of Diabetes Patients Based on Deep Learning: A Review: Machine Learning Al-Atroshi, Chiai; Adnan Mohsin Abdulazeez
The Indonesian Journal of Computer Science Vol. 13 No. 1 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i1.3738

Abstract

Unmanaged diabetes can result in a number of complications that need to be hospitalised. Diabetes is a chronic disorder. With preventive treatment, outcomes may be improved through early prediction of diabetes-related hospitalisation using data-driven algorithms. Here, we examine recent advances in deep learning methods for anticipating readmissions and unexpected hospital stays in adult patients with diabetes. Firstly, we present an overview of the main factors that indicate the need for hospitalisation due to diabetic complications. The research on hospitalisation risk prediction using structured health data, such as demographics, prescriptions, test results, etc., using conventional machine learning techniques is then summarised. Using data from insurance claims and electronic health records, we then examine current research that has used deep learning models. It is emphasised that longitudinal data can be included using recurrent neural networks. Model architectures, training methods, and important data modalities are covered. The assessment also addresses deployment difficulty and the model's performance assessment on real-world datasets. Ultimately, potential paths forward include hybrid models that integrate data diversity, explainable predictions, and clinical knowledge. In order to provide evidence-based predictions of the risk of hospitalisation and readmission for diabetes patients, we examine the potential and constraints of recently developed deep learning algorithms in this review.
Distributed Architectures for Big Data Analytics in Cloud Computing: A Review of Data-Intensive Computing Paradigm Al-Atroshi, Chiai; Zeebaree, Subhi R. M.
The Indonesian Journal of Computer Science Vol. 13 No. 2 (2024): The Indonesian Journal of Computer Science (IJCS)
Publisher : AI Society & STMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33022/ijcs.v13i2.3812

Abstract

Big Data challenges are prevalent in various fields, including economics, business, public administration, national security, and scientific research. While it offers opportunities for productivity and scientific breakthroughs, it also presents challenges in data capture, storage, analysis, and visualization. This paper provides a comprehensive overview of Big Data applications, opportunities, challenges, and current techniques and technologies to address these issues. This study presents a system for managing big data resources using cloud for the development of data-intensive applications. It addresses even the challenges related to technologies that combine cloud computing with other allied technologies and devices. In addition, the increasing volume, velocity, and variety of data in the era of Big Data necessitate advanced methods for data processing and management. This study delves into the intricacies of data scalability, real-time processing, and the integration of diverse data types. Furthermore, it explores the role of machine learning algorithms and artificial intelligence in extracting meaningful insights from massive datasets.