Claim Missing Document
Check
Articles

Found 2 Documents
Search

Proposed high gain single DC-source SC-MLI topology for solar PV grid integration applications Mohammad, Khan; Arif, M. Saad; Md. Ayob, Shahrin; Alrajhi, Hasan; Alam, Mohd Sarfaraz; Ahmad, Mohd Faraz
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i1.pp344-354

Abstract

Multilevel inverters (MLIs) are a key solution for converting DC to AC power. In this article, an improved single-source SC-MLI topology is developed for solar PV applications. It consists of 12 unidirectional switches, 3 capacitors, and 3 diodes to provide sextuple voltage boosting with a lower cost function. Since the capacitor's voltage is self-balanced, there is no need for an additional circuit or sensors, bringing down the circuit's complexity. A simple and fundamental frequency-based control strategy, nearest-level pulse width modulation, is applied to assess the viability of the proposed topology. As a result, the proposed topology has an efficiency of over 97%, and it can generate 13 levels with a total harmonic distortion (THD) of 6.51%. Comparative analysis is performed to show the feasibility of the proposed topology which outperformed other 13-level similar topologies in terms of component count, cost factor, and boosting factor. The proposed topology's performance is evaluated under static and dynamic loads. Furthermore, the thermal analysis is performed using PLECS software to determine the efficiency of the circuit topology. Finally, the feasibility of the proposed circuit is verified for solar PV application.
A comprehensive review of efficient wireless power transfer for electric vehicle charging: advancements, challenges, and future directions Khan, Md. Ashraf Ali; Kuber, Kuber; Wahab, Yusra; Arif, M. Saad; Ayob, Shahrin Md.; Nordin, Norjulia Mohamad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 16, No 4: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v16.i4.pp2156-2169

Abstract

Electric vehicles (EVs) have transformed the transportation sector, offering a sustainable alternative to fossil-fuel-powered vehicles. However, their widespread adoption faces challenges such as inadequate charging infrastructure, range anxiety, and concerns about user convenience. Wireless power transfer (WPT) technology provides an efficient, reliable, and user-friendly charging solution that eliminates physical connections, enabling both static and dynamic charging applications. This review explores key components of WPT systems, including wireless charging schemes, compensation circuits, coupling pad structures, and misalignment tolerance, emphasizing their impact on system efficiency and reliability. Findings highlight that WPT can enhance charging convenience, reduce dependence on large battery capacities, and support seamless EV integration into daily life. Additionally, WPT systems improve safety, lower maintenance needs, and create opportunities for autonomous charging. Key advancements in compensation topologies, coupling pad geometries, and misalignment-tolerant capabilities are discussed alongside their role in enhancing power transfer efficiency. By offering insights into the current state-of-the-art and future directions, this paper aims to support the development and deployment of WPT systems, contributing to the global transition toward sustainable transportation.