Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementation of Vision Transformer for Early Detection of Autism Based on EEG Signal Heatmap Visualization Rafiki, Aufa; Melinda, Melinda; Oktiana, Maulisa; Dewi Meutia, Ernita; Afnan, Afnan; Mulyadi, Mulyadi; Zakaria, Lailatul Qadri
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 1 (2025): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/40n05b64

Abstract

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by difficulties in social interaction, communication, and repetitive behavioral patterns. Early detection of ASD is crucial for improving the quality of life of affected individuals and alleviating the burden on their families. This study proposes a computer-aided diagnostic system for ASD by applying a pre-trained Vision Transformer (ViT-B/16) architecture to EEG signal data obtained from King Abdul Aziz University. The dataset comprises EEG recordings from 16 subjects (8 normal and 8 ASD) that have undergone preprocessing—including filtering using the Discrete Wavelet Transform (DWT), segmentation (windowing), and conversion into heatmap representations—and were subsequently partitioned into training, validation, and testing subsets. The ViT model was trained for 100 epochs with a batch size of 16, using the AdamW optimizer and the CrossEntropy loss function, while two learning rate configurations (0.0001 and 0.00001) were evaluated; the best-performing weights were selected based on the lowest validation loss. Test results indicate that the model trained with a learning rate of 0.00001 achieved a testing accuracy of 99.53%, accompanied by excellent precision, specificity, recall, and f1-score, thereby demonstrating strong generalization capabilities and minimal overfitting. Future research is recommended to incorporate locally sourced datasets and to further customize the ViT architecture through comprehensive hyperparameter tuning, with the aim of developing a mobile application to support clinical ASD diagnosis.
MEWT-Enhanced EEGNet for ASD EEG Classification: Performance Evaluation with k-Fold Cross-Validation Fathur Rahman, Imam; Melinda, Melinda; Yunidar, Yunidar; Basir, Nurlida; Rafiki, Aufa
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 8 No. 1 (2026): February
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v8i1.313

Abstract

Accurate and reliable classification of autism spectrum disorder (ASD) from electroencephalography (EEG) signals remains challenging due to the inherently nonstationary, nonlinear, and multichannel nature of EEG data. These properties complicate the extraction of discriminative features that are both stable and computationally efficient. To address this challenge, this study proposes a compact deep-learning pipeline that integrates the Multivariate Empirical Wavelet Transform (MEWT) with EEGNet for ASD–EEG classification. MEWT decomposes multichannel EEG signals into spectrally aligned subbands while preserving inter-channel relationships. The resulting MEWT-based features are then processed by EEGNet, a lightweight convolutional neural network specifically designed for EEG-based learning tasks. Performance was evaluated using 5-fold cross-validation. The proposed MEWT with the the EEGNet model achieved a mean test accuracy of 98.35%, with consistently high precision (98.23%), recall (98.45%), F1-score (98.34%), and specificity (98.24%) across all folds. Confusion-matrix results indicated very few and well-balanced false positives and false negatives, supporting stable discrimination between ASD and control EEG segments. A one-sample one-tailed t-test against a 50% chance level confirmed that all evaluated metrics were significantly above chance (p < 0.0001). When benchmarked against previously reported results on the same dataset, the proposed approach slightly improved upon EMD with EEGNet (97.99%) and clearly outperformed EWT with EEGNet (95.08%), suggesting that MEWT-derived multichannel features are well matched to compact convolutional architectures for ASD–EEG analysis. Despite these strong results, the study is limited by a small, single-site cohort and the use of a single deep-learning model. Future work will focus on standardized retraining across multiple feature families and validation on larger and more diverse populations to further assess robustness and generalizability