Mat Yahya, Nafrizuan
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Position tracking of DC motor with PID controller utilizing particle swarm optimization algorithm with Lévy flight and Doppler effect Mohamed Azmi, Nur Iffah; Mat Yahya, Nafrizuan
IAES International Journal of Robotics and Automation (IJRA) Vol 14, No 1: March 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v14i1.pp67-73

Abstract

This paper presents the implementation of the particle swarm optimization with the Lévy flight Doppler effect (PSO-LFDE) algorithm for optimizing proportional-integral-derivative (PID) controller parameters in a direct current (DC) motor system. Traditional optimization algorithms like particle swarm optimization, whale optimization algorithm, grey wolf optimizer, and moth flame optimization often face challenges in balancing exploration and exploitation, leading to suboptimal performance. The proposed PSO-LFDE algorithm addresses these issues by incorporating Lévy flight for enhanced exploration and the Doppler effect for refined exploitation. The algorithm is validated using MATLAB/Simulink for position control in a DC motor system with step inputs of 10, 30, and 60 cm. Key performance metrics, including rise time, settling time, peak time, and steady-state error, were compared against other optimization methods. PSO-LFDE demonstrated superior performance, achieving a 41.63% improvement in rise time and a 70.20% reduction in peak time compared to other methods. These results highlight PSO-LFDE's effectiveness in optimizing PID controller parameters and improving the dynamic response of DC motor systems, offering a robust solution for real-world control applications.
Design of a fuzzy logic proportional integral derivative controller of direct current motor speed control Ab Rahman, Nur Naajihah; Mat Yahya, Nafrizuan; Mohd Sabari, Nurul Umiza
IAES International Journal of Robotics and Automation (IJRA) Vol 12, No 1: March 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijra.v12i1.pp98-107

Abstract

Direct current (DC) motor speed control is useful. Speed can be modified based on needs and operations. DC motors cannot control their speed. To control the DC motor’s speed, a dependable controller is needed. The DC motor speed will be controlled by a fuzzy logic proportional integral derivative controller (FLC-PID). The DC motor circuit’s electrical and mechanical components have been modeled mathematically. Ziegler-Nichols is used to tune the PID controller’s gain parameters. The FLC controller employs 3×3 membership function rules in conjunction with the MATLAB/Fuzzy Simulink toolbox. Real hardware was attached to the simulation to evaluate the DC motor speed control using the fuzzy logic PID controller. DC motors with FLC PID controllers, FLC controllers, and DC motors alone will be compared for the transient response. The DC motor with an FLC PID controller performed better in this study.