Tammouch, Ilyas
Unknown Affiliation

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Two-dimensional Klein-Gordon and Sine-Gordon numerical solutions based on deep neural network Nouna, Soumaya; Nouna, Assia; Mansouri, Mohamed; Tammouch, Ilyas; Achchab, Boujamaa
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i2.pp1548-1560

Abstract

Due to the well-known dimensionality curse, developing effective numerical techniques to resolve partial differential equations proved a complex problem. We propose a deep learning technique for solving these problems. Feedforward neural networks (FNNs) use to approximate a partial differential equation with more robust and weaker boundaries and initial conditions. The framework called PyDEns could handle calculation fields that are not regular. Numerical exper- iments on two-dimensional Sine-Gordon and Klein-Gordon systems show the provided frameworks to be sufficiently accurate.
Does empathy and awareness of bullying affect the performance of Moroccan students in PISA? Tammouch, Ilyas; Elouafi, Abdelamine; Nouna, Soumaya
International Journal of Informatics and Communication Technology (IJ-ICT) Vol 14, No 3: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijict.v14i3.pp860-867

Abstract

Socioemotional skills, such as empathy and bullying awareness, play a pivotal role in shaping students' personal and academic development. These skills are increasingly recognized as critical factors influencing educational outcomes, particularly in addressing challenges like bullying that can hinder learning. This study examines the impact of empathy and bullying awareness on the academic performance of Moroccan students, using data from the 2018 Programme for International Student Assessment (PISA). To ensure robust causal inference in high-dimensional data, the double/debiased machine learning (DML) technique is employed. The findings reveal that higher levels of empathy and awareness of bullying significantly enhance performance across reading, mathematics, and science, with the most notable improvements observed in reading. These results remain consistent across various demographic and socioeconomic groups, highlighting their robustness. The study underscores the importance of integrating socioemotional learning into educational practices to foster academic success and create supportive school environments. By contributing to the growing evidence on non-cognitive skills in education, this research offers valuable insights for educators and policymakers seeking to improve student outcomes.
A competitive learning approach to enhancing teacher effectiveness and student outcomes Tammouch, Ilyas; Nouna, Soumaya; Elouafi, Abdelamine; Nouna, Assia
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i5.pp3647-3655

Abstract

Machine learning has found extensive application and improvement in the field of education. Nevertheless, there remains a lack of research studies focusing on unsupervised learning within this domain. To address this gap, our study aims to investigate the relationship between teacher attributes and student achievement in Morocco while identifying regions requiring attention and intervention, using a novel clustering approach based on unsupervised competitive learning, specifically the 'Centroid neural network', to cluster Moroccan teachers based on their qualities and qualifications. Teacher qualities and qualifications are operationalized as initial teaching qualifications, completion of training programs, and employment status. To achieve our objective, we utilize the program for international student assessment (PISA) dataset, which provides comprehensive responses from individual students, including information on parental backgrounds, socio-economic positions, and school conditions. Additionally, we incorporate data from the teacher questionnaire, which encompasses background information, initial education, professional development, teaching practice, and teacher beliefs and attitudes. Consistent with previous research, our findings suggest that teachers' qualities and qualifications significantly influence student performance. Furthermore, our clustering approach identifies regions where there is a pronounced prevalence of attributes negatively impacting student achievement. Urging academicians to incorporate resilience-building measures into the design of policies in these regions to improve students' educational outcomes.
Deep neural network solutions to Newell-Whitehead-Segel equations Nouna, Soumaya; Tammouch, Ilyas; Nouna, Assia; Mansouri, Mohamed
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i6.pp5172-5182

Abstract

In this work, we use the deep neural network (DNN) approach called NeuroDiffEq, and the unified finite difference exponential approach for obtaining the approximated and exact solutions of Newell-Whitehead-Segel systems that are essential for the biology of mathematics. A unified approach was used to generate several solutions for solitary waves of those systems. The approximated solutions for selected studies are explored using the NeuroDiffEq approach, which is the artificial neural networks (ANN) approach and is based upon trial approximate solution (TAS). The comparison between the obtained approximated solutions and the analytical solutions indicates that the applied method has proved an efficient as well as a highly successful approach to solving various types of the Newell-Whitehead-Segel equations.