El Hadiri, Abdeljalil
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Hypovigilance detection based on analysis and binary classification of brain signals El Hadiri, Abdeljalil; Bahatti, Lhoussain; El Magri, Abdelmounime; Lajouad, Rachid
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i2.pp984-991

Abstract

Road safety has now become a priority for drivers and citizens alike, given its considerable impact on the economy and human life, which is reflected in the increase in the number of accidents worldwide. This increase is linked to a number of factors, drowsiness being one of the main causes that can lead to tragic consequences. Various systems have been developed to monitor the state of alertness. The main idea adopted in this paper is based on the integration of a biosensor to acquire the cerebral signal, then the processing and analysis of the characteristics required to detect the two states of the driver using intelligent machine learning algorithms. Two models were chosen to carry out this binary classification: The K-nearest neighbour (KNN) and logistic regression (LR) classifiers. The experimental simulation results show that the first model outperforms the second in terms of accuracy, with a percentage of 97.83% for k=3. This could lead to the development of a new safety machine brain system based on classification to control vehicle speed deceleration or activate self-driving mode in the event of hypovigilance.