Claim Missing Document
Check
Articles

Found 2 Documents
Search

Analisis Sentimen Pengguna Twitter Terhadap Serangan Moskow oleh ISIS dengan Algoritma Naive Bayes Pratiwi, Cindy; Dodi Vionanda; Fayyadh Ghaly
UNP Journal of Statistics and Data Science Vol. 3 No. 1 (2025): UNP Journal of Statistics and Data Science
Publisher : Departemen Statistika Universitas Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24036/ujsds/vol3-iss1/349

Abstract

This study aims to analyze public sentiment towards the ISIS attack in Moscow, Russia on March 22, 2024 through twitter data using the Naive Bayes classification method. The attack had a significant impact on people's perceptions and reactions as reflected in the tweets of twitter social media users. To analyze this, 3005 English tweets from 22 March 2024 to 30 April 2024 relating to the event were collected using the crawling method with the phyton programming language. Preprocessing was done on the data to clean the data, then data labeling was done using phyton TextBlob. Naive Bayes algorithm is used to classify the sentiment of tweets into positive, and negative classes. The results of the research using Naive Bayes show that public sentiment tends to be negative towards the attacks that occurred. Naive Bayes classification results are quite good with an accuracy value of 70%, but there is an imbalance of data that tends to be biased towards negative sentiment. This research provides insight into how public opinion responds to events that occur and the performance of the Naive Bayes model in classification.
Peramalan Curah Hujan Sebagai Upaya Mitigasi Bencana Menggunakan Seasonal Autoregressive Integrated Moving Average Fayyadh Ghaly; Amelia Susrifalah; Yenni Kurniawati
Jurnal MSA (Matematika dan Statistika serta Aplikasinya) Vol 13 No 1 (2025): VOLUME 13 NO 1 TAHUN 2025
Publisher : Universitas Islam Negeri Alauddin Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24252/msa.v13i1.55289

Abstract

Rainfall prediction is important in disaster mitigation to reduce impacts such as drought, flood, and landslide. Rainfall data that has a seasonal pattern requires an appropriate forecasting method, one of which is SARIMA. This study predicts rainfall at the Deli Serdang Climatology Station, North Sumatra, based on monthly observation data for 2018–2023, showing a seasonal pattern with a 12-month cycle. The best model obtained is SARIMA (0,0,1) (0,0,1)12 with a MAPE of 19.5%, indicating a prediction accuracy of 80.5%. The forecasting results indicate a decrease in rainfall in the first semester of 2024, which is in the medium rainfall category. These findings can support disaster risk mitigation strategies and natural resource management planning related to climate change. The SARIMA model also has the potential to be applied in further climatology studies.