Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : International Journal of Robotics and Control Systems

Enhanced Advanced Multi-Objective Path Planning (EAMOPP) for UAV Navigation in Complex Dynamic 3D Environments Airlangga, Gregorius; Bata, Julius; Nugroho, Oskar Ika Adi; Sugianto, Lai Ferry; Saputro, Pujo Hari; Makin, See Jong; Alamsyah, Alamsyah
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1759

Abstract

Unmanned Aerial Vehicles (UAVs) have emerged as vital tools in diverse applications, including disaster response, surveillance, and logistics. However, navigating complex, obstacle-rich 3D environments with dynamic elements remains a significant challenge. This study presents an Enhanced Advanced Multi-Objective Path Planning (EAMOPP) model designed to address these challenges by improving feasibility, collision avoidance, and path smoothness while maintaining computational efficiency. The proposed enhancement introduces a hybrid sampling strategy that combines random sampling with gradient-based adjustments and a refined cost function that prioritizes obstacle avoidance and path smoothness while balancing path length and energy efficiency. The EAMOPP was evaluated in a series of experiments involving dynamic environments with high obstacle density and compared against baseline algorithms, including A*, RRT*, Artificial Potential Field (APF), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA). Results demonstrate that the EAMOPP achieves a feasibility score of 0.9800, eliminates collision violations, and generates highly smooth paths with an average smoothness score of 9.3456. These improvements come with an efficient average execution time of 6.6410 seconds, outperforming both traditional and heuristic-based methods. Visual analyses further illustrate the model's ability to navigate effectively through dynamic obstacle configurations, ensuring reliable UAV operation. Future research will explore optimizations to further enhance the model's applicability in real-world UAV missions.