Chandrappa, Maruthi Hanumanthappa
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Fuzzy based energy efficient cluster head selection with balanced clusters formation in wireless sensor networks Chandrappa, Maruthi Hanumanthappa; Govindaswamy, Poornima
Indonesian Journal of Electrical Engineering and Computer Science Vol 38, No 2: May 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v38.i2.pp928-939

Abstract

The importance of energy conservation presents a considerable challenge in wireless sensor networks (WSNs), where the sensor nodes (SNs) that constitute the network depend on battery power. Recharging the batteries of SNs in the field is challenging. The clustering technique is a commonly employed method for attaining energy efficiency. In this article, we are proposing a fuzzy-based energy efficient cluster head (CH) selection with the balanced cluster formation (FEECH-BCF) technique. It is a hybrid of the k-means algorithm, low energy adaptive clustering hierarchy- uniform size cluster (LEACH-USC) technique, and fuzzy logic technique. To create the clusters, the k-means approach is employed. The idea of LEACH-USC is used for load balancing to produce clusters with uniform size by assigning member nodes (MNs) from larger clusters to smaller clusters. Optimized CHs are selected using fuzzy based CH selection technique. The k-means algorithm is simple and quick to set up, assigning the membership of SNs to the next best cluster based on centroid locations of clusters reduces intra-cluster distance among clusters, and with the help of fuzzy logic, optimized CHs will be selected. The proposed algorithm performs exceptionally well in attaining uniform energy consumption amongst clusters and extends the network’s lifetime to a greater extent.
An energy-efficient and secure framework for wireless sensor networks Chandrappa, Maruthi Hanumanthappa; Govindaswamy, Poornima
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 14, No 5: October 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v14.i5.pp4151-4161

Abstract

In wireless sensor networks (WSNs), achieving energy efficiency, security, and minimizing route change propagation time is essential for maintaining optimal performance. This paper introduces a new approach that combines Bray Jaccard Curtis-based Calinski Harabasz k-means (BJC-CHKMeans) for clustering and Karl Pearson correlation-based egret swarm optimization algorithm (KPC-ESOA) for selecting the best cluster head (CH) and path, along with classifying long short-term memory with gated recurrent units (CLE-GRU) for detecting harmful nodes. The methodology aims to enhance energy usage, improve routing efficiency, and strengthen security by identifying malicious nodes. Additionally, it integrates a secure routing table using elbow de-swinging k-anonymity (EDS-KA) and employs digital signature algorithm-based Zeta Bernoulli Merkle tree (DSA-ZBMT) to ensure secure communication with sink nodes. The WSN-DS dataset was used for training and testing, with rigorous preprocessing, feature extraction, and selection to maintain data integrity. Experimental results revealed that the proposed BJC-CHKMeans and CLE-GRU models outperform traditional methods in power consumption, latency, and accuracy. The system achieved a power consumption of 2.1 mW for clustering and 1.9 mW for classification, while also providing near-perfect accuracy in detecting harmful nodes. These findings demonstrate that the framework significantly enhances the energy efficiency and security of WSNs, making it a highly effective solution for large, dynamic sensor networks.