Al-Sit, Waleed T.
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Spatial domain noise removal filtering for low-resolution digital images Salah, Zaher; Al-Sit, Waleed T.; Salah, Kamal; Elsoud, Esraa
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i3.pp1627-1642

Abstract

In this research work, six different filters are applied on a low resolution 8 b/pixel gray-scale images, which operate on small sub-images (windows of 3×3 to 11×11 pixels). The enhanced images are used to compare the efficiency of the different six filters using the peak signal to noise ratio (PSNR) image quality measure. Noise peak elimination filter (PSNR)=36.63) outperforms others, such as median filter (PSNR=36.61), while corruption estimation (PSNR=36.03) significantly cuts processing time by only processing the corrupted pixels while maintaining image details. Mean filter (PSNR=34.05) is sensitive to outliers, which cause the image's sharpness and fine features to be lost. By avoiding averaging across edges, bimodal-averaging filter (PSNR=35.30), which improves on the mean filter, chooses the mean of the biggest population. The median-mean filtering (PSNR=36.32), which combines median and mean filters and determines the output pixel by averaging the median and some nearby pixels, is another improvement above averaging.