Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta Ashari, Ilham Firman; Dwi Nugroho, Eko; Baraku, Randi; Novri Yanda, Ilham; Liwardana, Ridho
Journal of Applied Informatics and Computing Vol. 7 No. 1 (2023): July 2023
Publisher : Politeknik Negeri Batam

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30871/jaic.v7i1.4947

Abstract

Jakarta is the capital city of Indonesia, which has a high population density, and is an area that is frequently hit by floods. This study aims to determine the classification of flood-affected areas in Jakarta between severe, moderate, and low. Design/method/approach: The study was conducted using the elbow, Silhouette, Davidson-Bouldin, and Calinski-Harabasz methods on the K-means algorithm, as well as the Rand method. index for evaluation. Grouping with 3 and 6 groups is the best grouping value based on Calinski-Harabasz. By using the davies bouldin index from the observations, the K value with a value of 6 has the smallest Davies-Bouldin value with a value of 0.2737. By using sillhoute, the experimental results obtained the best values sequentially, namely K=2, K=3, and K=6 with silhouette values of 0.866, 0.854, and 0.803. In this experiment, based on the elbow method, it was found that the best K value was K=3. This was obtained because it was based on observations on the appearance of the SSE data compared to the value of K. In the graph above, it can be seen that the largest decrease in data occurred at K=3 and after this decrease, the decline began to slope. The rand index is a method used to compare several cluster methods. If the value is >= 90 it is a very good result, if the value is in the range 80 to 90 it identifies a good index, whereas if it is below 80 it indicates a bad index. The results show that cluster three is verified as the best cluster with a value of 1, followed by a second alternative with cluster 2 of 0.9182. From several validation and evaluation methods it can be concluded that the best grouping can be done using 3 clusters. The results of the study yielded a value of 75.4% in low areas, 21.1% in moderate areas, and 3.5% in severe areas.
Analisis Hubungan dan Prediksi Depresi Mahasiswa Berdasarkan Faktor Akademik dan Gender Verdiana, Miranti; Dwi Nugroho, Eko; Anggraini, Leslie; Bagaskara, Radhinka; Yulita, Winda; Afriansyah, Aidil; Habib Algifari, Muhammad
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 10 No. 1 : Tahun 2025
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to analyze the level of depression among university students by examining gender and several academic indicators. The dataset includes responses from 27,901 students across various regions, with variables covering age, gender, academic pressure, study satisfaction, work/study hours, CGPA, and depression status. The analytical methods applied in this study include the chi-square test to eval_uate the association between gender and depression status, point-biserial correlation to examine relationships between numeric variables and depression, and logistic regression to develop a prediction model. The chi-square test results revealed no significant relationship between gender and depression (p = 0.774), indicating that depression affects both genders. In contrast, academic pressure exhibited the strongest correlation with depression status (r = 0.47), followed by work/study hours (r = 0.209) and study satisfaction (r = -0.168). The Logistic Regression model constructed using the four most relevant variables demonstrated satisfactory performance, achieving 75.5% accuracy and 82.1% recall in identifying students experiencing depression. These findings highlight the critical role of academic-related factors—particularly academic pressure—in influencing students’ mental health. Therefore, targeted academic support strategies are essential to mitigate depression risks in higher education environments. Keywords— Student Depression, Academic Pressure, Gender, Logistic Regression, Mental Health Prediction
Analisis Hubungan dan Prediksi Depresi Mahasiswa Berdasarkan Faktor Akademik dan Gender Verdiana, Miranti; Dwi Nugroho, Eko; Anggraini, Leslie; Bagaskara, Radhinka; Yulita, Winda; Afriansyah, Aidil; Habib Algifari, Muhammad
Jurnal Teknik Informatika UNIKA Santo Thomas Vol 10 No. 1 : Tahun 2025
Publisher : LPPM UNIKA Santo Thomas

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to analyze the level of depression among university students by examining gender and several academic indicators. The dataset includes responses from 27,901 students across various regions, with variables covering age, gender, academic pressure, study satisfaction, work/study hours, CGPA, and depression status. The analytical methods applied in this study include the chi-square test to eval_uate the association between gender and depression status, point-biserial correlation to examine relationships between numeric variables and depression, and logistic regression to develop a prediction model. The chi-square test results revealed no significant relationship between gender and depression (p = 0.774), indicating that depression affects both genders. In contrast, academic pressure exhibited the strongest correlation with depression status (r = 0.47), followed by work/study hours (r = 0.209) and study satisfaction (r = -0.168). The Logistic Regression model constructed using the four most relevant variables demonstrated satisfactory performance, achieving 75.5% accuracy and 82.1% recall in identifying students experiencing depression. These findings highlight the critical role of academic-related factors—particularly academic pressure—in influencing students’ mental health. Therefore, targeted academic support strategies are essential to mitigate depression risks in higher education environments. Keywords— Student Depression, Academic Pressure, Gender, Logistic Regression, Mental Health Prediction