Maulana, Rizki Azli
Unknown Affiliation

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Kernel Algoritma Support Vector Regression Terhadap Performa Prediksi Produksi Kelapa Sawit: Comparison of the Support Vector Regression Kernel Algorithm on the Performance of Palm Production Prediction Maulana, Rizki Azli; Permana, Inggih; Salisah, Febi Nur; Ahsyar, Tengku Khairil; Jazman, Muhammad
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 5 No. 1 (2025): MALCOM January 2025
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v5i1.1410

Abstract

Produksi kelapa sawit merupakan salah satu faktor utama dalam industri perkebunan kelapa sawit yang memengaruhi kesejahteraan ekonomi suatu daerah. Dalam upaya untuk meningkatkan prediksi produksi kelapa sawit, algoritma Support Vector Regression (SVR) telah diadopsi sebagai metode prediksi yang potensial. Namun, pilihan kernel dalam SVR dapat mempengaruhi performa prediksi. Penelitian ini bertujuan untuk membandingkan performa prediksi produksi kelapa sawit menggunakan tiga kernel yang berbeda, yaitu linear, polinomial, dan radial basis function (RBF), di PTPN V.Data produksi kelapa sawit dari PT Perkebunan Nusantara V (PTPN V) digunakan sebagai data input. Metrik evaluasi performa prediksi, seperti mean absolute error (MAE), mean squared error (MSE), dan koefisien determinasi (R-squared), digunakan untuk membandingkan ketiga kernel SVR. Hasil eksperimen menunjukkan bahwa kernel RBF cenderung memberikan hasil prediksi yang lebih baik dibandingkan dengan kernel linear dan polinomial. Namun, faktor-faktor seperti kestabilan model dan kecepatan komputasi juga perlu dipertimbangkan dalam pemilihan kernel. Penelitian ini memberikan wawasan penting bagi pengguna SVR dalam memilih kernel yang sesuai untuk meningkatkan prediksi produksi kelapa sawit di PTPN V.