Terada, Kenji
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Traffic light optimization (TLO) using reinforcement learning for automated transport systems Hassan, Mohammad Mehedi; Karungaru, Stephen; Terada, Kenji
International Journal of Advances in Intelligent Informatics Vol 11, No 1 (2025): February 2025
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v11i1.1655

Abstract

Current traffic light systems follow predefined timing sequences, causing the light to turn green even when no cars are waiting, while the side road with waiting vehicles may still face a red light. Reinforcement learning can help by training an intelligent model to analyze real-time traffic conditions and dynamically adjust signal lights based on actual demand and necessity. If the traffic light becomes intelligent and autonomous then it can significantly reduce the time wasted everyday commuting due to previously determined traffic light timing sequences. In our previous work, we used fuzzy logic to control the traffic light where the time was fixed but in this paper, the waiting time becomes a variable that changes depending on other road variables like vehicles, pedestrians, and times. Moreover, we trained an agent in this work using reinforcement learning to optimize the traffic flow in junctions with traffic lights. The trained agent worked using the greedy method to improve traffic flow to maximize the rewards by changing the signals appropriately. We have two states and there are only two actions to take for the agent. The results of the training of the model are promising.  In normal situations, the average waiting time was 9.16 seconds. After applying our fuzzy rules, the average waiting time was reduced to 0.26 seconds, and after applying reinforcement learning, it was 0.12 seconds in a simulator. The average waiting time was reduced by 97~98%. These models have the potential to improve real-world traffic efficiency by approximately 67~68%.
Domain adaptation for driver's gaze mapping for different drivers and new environments Sonom-Ochir, Ulziibayar; Karungaru, Stephen; Terada, Kenji; Ayush, Altangerel
International Journal of Advances in Intelligent Informatics Vol 10, No 1 (2024): February 2024
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v10i1.1168

Abstract

Distracted driving is a leading cause of traffic accidents, and often arises from a lack of visual attention on the road. To enhance road safety, monitoring a driver's visual attention is crucial. Appearance-based gaze estimation using deep learning and Convolutional Neural Networks (CNN) has shown promising results, but it faces challenges when applied to different drivers and environments. In this paper, we propose a domain adaptation-based solution for gaze mapping, which aims to accurately estimate a driver's gaze in diverse drivers and new environments. Our method consists of three steps: pre-processing, facial feature extraction, and gaze region classification. We explore two strategies for input feature extraction, one utilizing the full appearance of the driver and environment and the other focusing on the driver's face. Through unsupervised domain adaptation, we align the feature distributions of the source and target domains using a conditional Generative Adversarial Network (GAN). We conduct experiments on the Driver Gaze Mapping (DGM) dataset and the Columbia Cave-DB dataset to evaluate the performance of our method. The results demonstrate that our proposed method reduces the gaze mapping error, achieves better performance on different drivers and camera positions, and outperforms existing methods. We achieved an average Strictly Correct Estimation Rate (SCER) accuracy of 81.38% and 93.53% and Loosely Correct Estimation Rate (LCER) accuracy of 96.69% and 98.9% for the two strategies, respectively, indicating the effectiveness of our approach in adapting to different domains and camera positions. Our study contributes to the advancement of gaze mapping techniques and provides insights for improving driver safety in various driving scenarios.