Abstract: The Academic Information System (SIAKAD) has become a crucial tool in universities for monitoring and evaluating student performance periodically. Data generated by this system, such as Grade Point Average (GPA), attendance, and student activities, can be utilized to predict timely graduation. In this study, the K-Nearest Neighbors (K-NN) algorithm is applied to predict student graduation based on academic and non-academic data. This method employs a distance-based approach to analyze historical data. The findings indicate that the K-NN algorithm provides accurate predictions, enabling educational institutions to implement early interventions for at-risk students. This study is expected to support strategic decision-making in improving student graduation rates. Keywords: SIAKAD, K-Nearest Neighbors, graduation prediction, distance-based algorithm, early intervention.Abstrak: Aplikasi Sistem Informasi Akademik (SIAKAD) telah menjadi alat penting dalam perguruan tinggi untuk memonitor dan mengevaluasi hasil belajar mahasiswa secara berkala. Berbagai data yang dihasilkan oleh sistem ini, seperti Indeks Prestasi Kumulatif (IPK), kehadiran, dan aktivitas mahasiswa, dapat digunakan untuk memprediksi kelulusan tepat waktu. Dalam penelitian ini, algoritma K-Nearest Neighbors (K-NN) diterapkan untuk memprediksi kelulusan mahasiswa berdasarkan data akademik dan non-akademik. Metode ini bekerja dengan menggunakan pendekatan berbasis jarak untuk menganalisis data historis. Hasil penelitian menunjukkan bahwa algoritma K-NN memberikan prediksi yang akurat, sehingga membantu institusi pendidikan melakukan intervensi dini bagi mahasiswa yang berisiko. Penelitian ini diharapkan dapat mendukung pengambilan keputusan strategis dalam meningkatkan tingkat kelulusan mahasiswa. Kata kunci: SIAKAD, K-Nearest Neighbors, prediksi kelulusan, algoritma berbasis jarak, intervensi dini.