Latar Belakang: Kanker merupakan salah satu penyakit yang memiliki tingkat kematian tinggi, sehingga dibutuhkan metode klasifikasi yang akurat untuk mendukung proses diagnosis. Penelitian ini membandingkan performa metode K-Nearest Neighbors (KNN) dan Regresi Logistik Biner dalam mengklasifikasikan kanker sebagai ganas atau jinak. Metode: Penelitian ini menggunakan dataset sekunder dari Kaggle yang terdiri dari 569 data pasien kanker dengan 11 variabel independen yang mencakup karakteristik tumor. Model dikembangkan dengan menggunakan normalisasi data, pembagian data training dan testing, serta teknik K-Fold Cross Validation untuk optimasi parameter K dalam KNN. Evaluasi model dilakukan berdasarkan akurasi, presisi, recall, serta uji McNemar dan ANOVA untuk menguji signifikansi perbedaan performa model. Hasil: Model KNN dengan K=13 menunjukkan akurasi 95,58%, presisi 95,83%, dan recall 97,18%, sementara Regresi Logistik Biner memiliki akurasi 94,69%, presisi 92,86%, dan recall 92,86%. Hasil uji McNemar menunjukkan bahwa tidak terdapat perbedaan signifikan antara kedua model (p-value = 1), sedangkan hasil ANOVA menunjukkan bahwa semua variabel independen berkontribusi terhadap model. Kesimpulan: Kedua metode menunjukkan performa yang baik dalam klasifikasi kanker, tetapi KNN dengan K=13 memiliki sedikit keunggulan dalam akurasi dan recall dibandingkan Regresi Logistik Biner. Implementasi model ini dapat mendukung sistem pendukung keputusan dalam diagnosis kanker untuk meningkatkan ketepatan hasil klasifikasi.