Claim Missing Document
Check
Articles

Found 1 Documents
Search

Control Traffic in SDN Systems by using Machine Learning techniques: Review Askar, Shavan; Hussein, Diana; Ibrahim, Media; Aziz Mohammed, Marwan
International Journal of Research and Applied Technology (INJURATECH) Vol. 5 No. 1 (2025): Vol 5 No 1 (2025)
Publisher : Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Due to the rapid development of Internet and mobile communication technologies, which have spearheaded a fast growth of networking systems to become increasingly complex and diverse regarding infrastructure, devices, and resources. This requires further intelligence deployment to improve the organization, management, maintenance, and optimization of these networks. However, it is difficult to apply machine learning techniques in controlling and operating networks because of the inherent distributed structure of traditional networks. The centralized control of all network operations, holistic knowledge of the network, software-based monitoring of traffic, and updating of forwarding rules to enable the functions of (SDN) are factors that (SDN) has that facilitate the application of machine learning techniques. This study will make an extensive review of existing literature to be able to answer the research question of how machine learning techniques can be used in the context of the SDN. First, it gives a review of the foundational literature information. After this, a brief review of machine learning techniques is presented. We shall also delve into the application of machine learning techniques in the area of (SDN), with a sharp edge on traffic classification, prediction of Quality-of-Service (QoS), and optimization of routing and Quality-of-Experience (QoE) security management of the resource separately. Finally, we engage in discussions surrounding challenges and broader perspectives.