Claim Missing Document
Check
Articles

Found 1 Documents
Search

Deep Learning Security Schemes in IIoT: A Review Askar, Shavan; Hussein, Diana; Ibrahim, Media; Mohammed , Marwan Aziz
International Journal of Research and Applied Technology (INJURATECH) Vol. 5 No. 1 (2025): Vol 5 No 1 (2025)
Publisher : Universitas Komputer Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The Industrial Internet of Things (IIoT) is a fast-growing technology that might digitize and connect numerous industries for substantial economic prospects and global GDP growth. By the fourth industrial revolution, Industrial Internet of Things (IIoT) platforms create massive, dynamic, and inharmonious data from interconnected devices and sensors. Security and data analysis are complicated by such large diverse data. As IIoT increases, cyberattacks become more diversified and complicated, making anomaly detection algorithms less successful. IIoT is utilized in manufacturing, logistics, transportation, oil and gas, mining, metallurgy, energy utilities, and aviation. IIoT offers significant potential for industrial application development, however cyberattacks and higher security requirements are possible. The enormous volume of data produced by IoT devices demands advanced data analysis and processing technologies like deep learning. Smart assembly, smart manufacturing, efficient networking, and accident detection and prevention are possible with DL algorithms in the Industrial Internet of Things (IIoT). These many applications inspired this article on DL's IIoT potential.