Dony, Dony
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deteksi YOLOv8 dan Pengenalan Wajah Menggunakan RESNET50 Pada Gereja Dony, Dony; Lubis, Chairisni
JATISI (Jurnal Teknik Informatika dan Sistem Informasi) Vol 12 No 1 (2025): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v12i1.9757

Abstract

Face recognition and object detection technologies have been used and developed rapidly in various fields such as security, facilities management, and surveillance. Churches, as a place where many people gather, often face challenges in seating management and monitoring congregation attendance, which is still done traditionally or manually. This traditional approach not only requires a lot of time and effort, but is also prone to human error. Therefore, a system was designed to be able to detect the availability of chairs and identify the faces of the congregation automatically, using the YOLOv8 method and a Convolutional Neural Network (CNN) based on the ResNet-50 model for face detection and recognition. The test results from the 3 groups tested obtained an average accuracy of 85.26% and a detection accuracy of 95.46% with the YOLOv8 model training reaching 97% mAP50 and the ResNet50 model with an accuracy of 99.54% and a validation accuracy of 99.37%.
IMPLEMENTASI METODE PROFILE MATCHING UNTUK MENENTUKAN REKOMENDASI PENERIMA BANTUAN SUMBANGAN PEMBINAAN PENDIDIKAN Hidayat, Wahyu; Febriantoro, F.R. Dwi; Dony, Dony
JRIS : Jurnal Rekayasa Informasi Swadharma Vol 5, No 2 (2025): JURNAL JRIS EDISI JULI 2025
Publisher : Institut Teknologi dan Bisnis (ITB) Swadharma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56486/jris.vol5no2.895

Abstract

This research aims to develop a decision support system to identify students who are eligible to waive the cost of academic development donations. The method used is the Profile matching Method. System testing is carried out by information system experts and users using a questionnaire instrument. Based on this test, the system was deemed very feasible by the system expert, with a value of 91%. It was declared very feasible based on user testing, with a value of 85%. The results were then tested using Spearman's Rank correlation, yielding a result of 0.91, indicating that the correlation was robust. Each criterion has a predetermined weight and value. The decision support system for determining students eligible for tuition relief assistance using the profile matching method produces a list of students based on grades that have been calculated and compared to the desired standard value.Penelitian ini bertujuan mengembangkan sistem pendukung keputusan untuk menentukan siswa yang berhak mendapatkan bantuan pembebasan biaya sumbangan pembinaan pendidikan. Metode yang digunakan adalah Metode Profile matching. Pengujian sistem dilakukan kepada ahli sistem informasi dan pengguna dengan menggunakan instrumen kuesioner. Berdasarkan pengujian tersebut sistem dinyatakan sangat layak dari pengujian ahli sistem dengan nilai 91% kemudian dinyatakan sangat layak berdasarkan pengujian pengguna dengan nilai 85% dan sudah dilakukan uji hasil menggunakan Spearman Rank dengan hasil 0,91 maka di interpretasikan korelasi sangat kuat. Setiap kriteria memiliki bobot dan nilai yang sudah ditentukan. Sistem pendukung keputusan untuk menentukan siswa yang berhak mendapatkan bantuan keringanan SPP menggunakan metode profile matching menghasilkan daftar peserta didik berdasarkan nilai yang sudah dihitung dan dibandingkan dengan nilai standar yang diinginkan.