Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Algoritma Kriptografi Blowfish dengan Kombinasi Android Id pada Aplikasi Berbasis Android Yudi Priyanggodo, Dyas
Jurnal Teknik Vol 14, No 1 (2025): Januari - Juni 2025
Publisher : Universitas Muhammadiyah Tangerang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31000/jt.v14i1.13732

Abstract

Keamanan data dalam aplikasi Android menjadi perhatian penting, terutama dalam melindungi informasi sensitif dari akses yang tidak sah. Algoritma Blowfish merupakan salah satu metode enkripsi simetris yang terkenal karena kecepatannya dan fleksibilitas panjang kunci. Dalam penelitian ini, kami mengimplementasikan algoritma Blowfish dengan kombinasi Android ID untuk mengikat enkripsi pada perangkat tertentu. Android ID digunakan sebagai bagian dari kunci enkripsi agar data yang terenkripsi hanya dapat didekripsi oleh perangkat yang sama. Implementasi dilakukan dalam lingkungan pengembangan Android menggunakan bahasa pemrograman Java/Kotlin dan pustaka kriptografi Java Cryptography Extension (JCE). Hasil pengujian menunjukkan bahwa metode ini mampu meningkatkan keamanan dengan memastikan bahwa data tidak dapat diakses di perangkat lain meskipun file terenkripsi diekstrak. Penelitian ini memberikan solusi efektif untuk meningkatkan proteksi data pada aplikasi Android dengan mempertahankan performa sistem yang optimal.Kata Kunci: Blowfish, Android ID, Enkripsi, Kriptografi, Keamanan
Pengembangan Sistem Informasi Pelayanan Pemesanan Berbasis Web Menggunakan Metode Extreme Programming Pada Usaha Kecil Menengah Destriana, Rachmat; Sugiyani, Yani; Yudi Priyanggodo, Dyas; Prasetyoadi, Erwin
Jurnal Teknik Vol 13, No 1 (2024): Januari - Juli 2024
Publisher : Universitas Muhammadiyah Tangerang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31000/jt.v13i2.14195

Abstract

Kedai Wildan is  a  restaurant that is  often visited. Not  a  few restaurants are overwhelmed to serve customers when it's busy. Customers also feel uncomfortable if the service in the wildan stall is not optimal. One of the problems is the menu ordering system which still uses the manual method and customers must come to the location to be able to order the existing menu. This was considered ineffective and inefficient considering the limited number of employees which was disproportionate to the hectic number of visitors who came. So we need a system that can make it easier to  order menus at  Kedai Wildan. Therefore, a  website-based food  and beverage menu ordering system was created to make it easier for customers and employees. The method used is the data collection method which consists of the observation method, the interview method, the literature study method, and includes the analysis method using the PIECES method, the system development method using the extreme programming method, and the design is carried out using the Unified Modeling Language (UML) method. To test the system using Black Box Testing, namely the login process, managing menu data, and viewing order invoices. With this menu ordering information.
Design of a Digital Platform for PAUD Child Development Monitoring Using the Dynamic Systems Development Method and Machine Learning Destriana, Rachmat; Aksani, Muhamad Luthfi; Yudi Priyanggodo, Dyas; Farzani, Revalina
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 5 (2025): JUTIF Volume 6, Number 5, Oktober 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.5.4958

Abstract

This study aims to design a digital platform for monitoring early childhood development in PAUD (Pendidikan Anak Usia Dini) institutions by integrating Machine Learning (ML) into the Dynamic Systems Development Method (DSDM) framework. The research addresses persistent challenges in traditional monitoring systems, which are typically manual, fragmented, and lack real-time responsiveness. Utilizing a Research and Development (R&D) approach, the platform was developed iteratively with active involvement from teachers, parents, and administrators of PAUD institutions. System modeling employed Unified Modeling Language (UML), while ML techniques such as Decision Trees were trained on datasets sourced from PAUD Flamboyan in Tangerang. Key platform features include child data input, growth visualization, predictive analytics, and interactive dashboards. The system underwent black-box testing and usability assessments, achieving an average usability score of 4.5 out of 5. The ML model demonstrated  statistically valid and reliable performance with 89% accuracy, 85% precision, and 87% recall in predicting developmental delays. The findings highlight the effectiveness of the DSDM approach in facilitating adaptive system development, and underscore the value added by ML integration in enhancing decision-making within early childhood education. The platform not only streamlines developmental monitoring but also supports early interventions. Future work is recommended to broaden data sources, enrich personalization, and scale deployment across varied PAUD contexts. This study contributes to the advancement of intelligent decision support systems in early childhood education, enabling more accurate developmental monitoring and timely interventions.