ABSTRAKKabupaten Tangerang mengalami pertumbuhan penduduk pesat yang mendorong perubahan tutupan lahan. Rencana Tata Ruang Wilayah (RTRW) 2020 digunakan sebagai panduan pemanfaatan lahan, dengan klasifikasi utama: lahan terbangun, badan air, vegetasi, dan lahan terbuka. Penelitian ini menganalisis perubahan tutupan lahan menggunakan algoritma Classification and Regression Trees (CART) pada citra Sentinel-2A tahun 2019 dan 2023 di Google Earth Engine. Hasil menunjukkan peningkatan luas bangunan dan lahan terbuka masing-masing 19,866 km² dan 17,877 km², sementara vegetasi dan badan air menurun 33,446 km² dan 4,297 km². Akurasi klasifikasi mendapatkan 89,36% (2019) dan 90,29% (2023). Selain itu, kesesuaian tutupan lahan dengan RTRW meningkat 36,71 km² atau 4%. Hasil ini menunjukkan efektivitas metode CART dalam memantau perubahan tutupan lahan serta relevansinya dengan kebijakan tata ruang di Kabupaten Tangerang.Kata Kunci : Tutupan lahan; Rencana Tata Ruang Wilayah (RTRW), Google Earth Engine (GEE),Classification and Regression Trees (CART), Penginderaan jauh.ABSTRACTTangerang Regency is experiencing rapid population growth that is driving land cover change. The 2020 Regional Spatial Plan (RTRW) is used as a guide for land use, with the main classifications: built-up land, water bodies, vegetation, and open land. This study analyzed land cover change using the Classification and Regression Trees (CART) algorithm on 2019 and 2023 Sentinel-2A images in Google Earth Engine. The results showed an increase in building area and open land of 19.866 km² and 17.877 km² respectively, while vegetation and water bodies decreased by 33.446 km² and 4.297 km². The classification accuracy was 89.36% (2019) and 90.29% (2023). In addition, land cover conformity with the RTRW increased by 36.71 km² or 4%. These results demonstrate the effectiveness of the CART method in monitoring land cover change and its relevance to spatial policy in Tangerang District.Keywords: Land cover, Regional Spatial Plan (RTRW), Supervised Classification, Google Earth Engine (GEE), Classification and Regression Trees (CART), Remote sensing