Claim Missing Document
Check
Articles

Found 2 Documents
Search

Harnessing Copper's Potential: A Review of Cu-Based Catalysts for Glycerol Conversion Ahmed, Sabeel; Abdullah, Iman; Krisnandi, Yuni Krisyuningsih
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20341

Abstract

The increasing depletion of fossil fuel reserves and environmental concerns have accelerated the search for sustainable alternatives, leading to the utilization of biodiesel as a renewable energy source. Glycerol, a key byproduct of biodiesel production, has been extensively investigated for conversion into value-added compounds such as lactic acid, acrylic acid, and 1,2-propanediol (1,2-PDO). Copper-based catalysts have gained popularity due to their low cost, high catalytic efficiency, and environmental friendliness. This review examines various copper-based catalytic systems for glycerol conversion through key processes such as hydrogenolysis, oxidation, steam reforming, and dehydration. The work focuses on how Cu-based bimetallic catalysts, such as Cu-Ni, Cu-Co, and Cu-Zn, improve reaction selectivity and conversion rates via synergistic interactions, better metal dispersion, and optimized redox properties. Furthermore, new catalyst manufacturing methods, such as ammonia evaporation, hydrothermal, and ion exchange approaches, have shown improved stability and reusability. The findings show that Cu-based catalysts successfully facilitate high glycerol conversion, with selective pathways favouring the generation of 1,2-PDO, lactic acid, and acrylic acid under optimal circumstances. However, catalyst deactivation caused by sintering and coke formation remains a concern. Future research should concentrate on creating stable, multifunctional catalysts, adding bio-derived support, and improving reaction conditions to increase long-term efficiency and industrial usability. This review emphasizes the potential of Cu-based catalytic systems in promoting glycerol valorisation and achieving a more sustainable chemical industry. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Increasing energy density of vanadium redox flow batteries: A comprehensive review Ahmed, Sabeel; Abdullah, Iman; Krisnandi, Yuni Krisyuningsih
Environmental and Materials Vol. 3 No. 2: (December) 2025
Publisher : Institute for Advanced Science, Social, and Sustainable Future

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61511/eam.v3i2.2025.1828

Abstract

Background: Vanadium Redox Flow Batteries (VRFBs) represent a leading energy storage technology for renewable integration due to their long cycle life, high safety, and flexible scalability. However, their low energy density and high cost continue to limit widespread adoption. This study aims to synthesize and critically evaluate recent advances in enhancing VRFB performance through innovations in electrode materials, electrolyte chemistry, and membrane design. Methods: This study adopts a comprehensive literature review approach, analyzing theoretical and experimental research published in recent years. The review focuses on advancements in nanostructured electrode surfaces, optimized electrolyte formulations, and functional hybrid membranes. Theoretical insights from materials science and electrochemistry were integrated to establish the correlation between structure, performance, and efficiency. Findings: The reviewed studies reveal that nanostructured and heteroatom-doped electrodes enhance redox kinetics and minimize side reactions, while optimized electrolytes with mixed acids and stabilizers improve vanadium solubility and thermal stability. Hybrid polymer–inorganic membranes effectively reduce vanadium ion crossover and maintain high proton conductivity, thereby increasing coulombic and energy efficiencies. Collectively, these advancements improve power output, reduce self-discharge, and enhance long-term cycling performance, moving VRFBs closer to economic feasibility. Conclusion: Advancements in material design and system optimization are pivotal in overcoming the limitations of conventional VRFBs. Continued research on scalable, low-cost materials, electrolyte recycling, and hybrid integration will further promote sustainable energy storage. Novelty/Originality of this article: This review uniquely integrates material-level and system-level perspectives, offering a holistic understanding of how innovations across components collectively advance high-efficiency, cost-effective, and environmentally sustainable VRFB technology for next-generation renewable energy systems.