Claim Missing Document
Check
Articles

Found 2 Documents
Search

Maximize the total electric sale profit for a hybrid power plant with fifteen thermal units and a 100-MW solar photovoltaic farm under a 20-year power generation project Tran, Dao Trong; Nguyen, Thang Trung
International Journal of Renewable Energy Development Vol 14, No 3 (2025): May 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60943

Abstract

This study investigates the effectiveness of two recently proposed meta-heuristic methods, the Weighted Average Algorithm (WAA) and Electric Eel Foraging Optimization (EEFO), to maximize the total profit of a hybrid power system. The considered system comprises fifteen thermal generating units (TGUs) and a 100-MW solar photovoltaic farm (SPP) operating over a 20-year period. Initially, the problem is solved under conditions of fixed load demand and rated power supply from the renewable energy source while accounting for prohibited operating zone constraint and system power losses. Comparative results obtained from both algorithms demonstrate that EEFO exhibits superior performance in terms of stability and convergence speed. Specifically, EEFO demonstrates a lower fluctuation in overall electricity generation cost (OEGC) across multiple independent runs compared to WAA. Furthermore, EEFO achieves better minimum, mean, and maximum OEGC values of $0.266, $58.890, and $214.225, respectively. Subsequently, EEFO is reapplied to maximize the profit of the hybrid power system, incorporating load demand variations and real solar radiation data. This analysis includes the evaluation of initial capital expenditure (CAPEX) and operation and maintenance (O&M) costs for the SPP over the 20-year period. Current electricity and solar power prices are utilized to illustrate the cumulative profit over time. The results indicate that the hybrid system experienced the highest loss in the first year, with the minimum loss occurring after 9 years for the TGUs and 7 years for the SPP. Profitability is achieved after 10 years for the TGUs and 7 years for the SPP. The cumulative profit over 20 years amounts to $14.2 billion for the TGUs and $0.207 billion for the SPP, representing approximately 83% and 127% of their respective total costs.
Minimize Total Cost and Maximize Total Profit for Power Systems with Pumped Storage Hydro and Renewable Power Plants Using Improved Self-Organizing Migration Algorithm Tran, Dao Trong; Phan, Tan Minh
Journal of Engineering and Technological Sciences Vol. 56 No. 1 (2024)
Publisher : Directorate for Research and Community Services, Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/j.eng.technol.sci.2024.56.1.7

Abstract

This study presents the application of an improved self-organizing migration algorithm (ISOMA) for minimizing the total electricity production expenditure (TEPE) and maximizing the total electricity sale profit (TPRF) for hydrothermal power systems (HTPS) without and with renewable energies. Two power system configurations were employed to test the real efficiency of ISOMA while dealing with two objective functions. In the first configuration, there was one thermal power plant and one hydropower plant, while in the second configuration, wind and solar energy were both connected to the first system. The results achieved in the first configuration with the first objective function indicated that ISOMA not only outperformed SOMA according to all comparison criteria but was also superior to other methods such as evolutionary programming (EP), acceleration factor-based particle swarm optimization (AFPSO), and accelerated particle swarm optimization (APSO). The evaluation of the results achieved by ISOMA in the second configuration with the objective function of maximizing the TPRF revealed that ISOMA could reach better profits than SOMA in terms of maximum, mean and minimum TPRF values over fifty trial runs. As a result, it was concluded that pumped storage hydropower plants are very useful in integrating with renewable power plants to cut total cost for thermal power plants and in reaching the highest profit for the whole system. Also, ISOMA is a suitable algorithm for the considered problem.